DESIGNING VARIETY TESTS TO REVEAL TTH ADAPIABILITY OF
 VARIEMIES TO VARYING LEVELS OE FBRTILITY, SPACING AND DIFHPREIVCES IN RAIT OF WATURITY

Bion Tolman, U. S. D. A.
Proper evaluation of new varieties as they are developed is essential to carrying on a sound breeding program. Accurate and detailed comparisons between varieties become increasingly difficult as the number of varieties are increased. To save time and expense it is important that variety tests be as complete as possible.

It has been noted that varieties which have been developed in the breeding program vary widely in sugar content; yiclding ability, size of top and length of season required to mature properly. Some data have also been obtained which indicates that varieties differ in their response to spacing and that this is further conditioned by soil fertility and possibly other factors more difficult to measure.

Then a variety is released for comnercial production it is going to be grown on a diversity of soil types and fertility levels, and it will be grown with widely differing spacings. It is desirable that varieties for commercial production have as wide an adaptability as possible. The real problem is how best to learn this in the shortest time, as important decisions must be made each yoar, and how best to conduct the tests where sufficient information can be obtained to make a critical comparison between varietios. Most careful attention and most critical observations can be made where as complete a test as possible is conducted on one experimental field.

With the foregoing considerations in mind, a comprehensive test including 24 varieties has been conducted during the past two years. The test included from 10 to 12 replications of each variety; covered two fertility levels, with close and wide spacing provided on each level of fertility, and harvest data were obtained on two dates, approximately one month apart, to give a measure of rate of maturity. The data obtained indicate that additional information obtained by this type of experiment is of great importance to the breeding program and comercial distribution of varieties.
 VARTETY TESSS

F. R. Immer, University of Minnesota.

An informal discussion, no manuscript.

DECOMPOSITION IOSSES OF SUGAR FROM CUT SURFACES OF BEETS

F. R. Bachler
American Crystal Sugar Company

In such beet sugar factories where the beets are bought from the grower on a basis of their sugar content, the records show that there is invariably not only an appreciable loss in net weight of beets bought and sliced, but also a very considerable loss in the weight of sucrose paid for as compared with the weight of sucrose ontering the house.

The existing differences are fairly easily traceable and can be accounted for within close limits as being due to the combination of weight losses due to shrinkage in transit and in storage, and the weight gains due to water absorption during fluraing and washing. Such a control requires the keeping of daily records of the earth-tare and tom-tare ratios, also frequent daily determination of the percent of water absorbed during fluming and washing.

But when sugar balance is struck there will be invariably found costly losses of sucrose, which we cannot assign to analytical errors, but must be assigned as decomposition losses. This being, no doubt, correct it is equally correct to say that a part of these losses are preventablo. For instance, the beet, as a living organism, must consume some of its sucrose to satisfy its bi ological needs, but if the beets are temporarily stored this oxidation can become unduly high, while proper storage conditions may reduce this source of loss to a point close to the irreducible minimum and thereby could be achieved an appreciable reduction in the over-all decomposition losses.

Next to poor storage, perhaps the most potent cause of sugar losses, is that due to destruction of sucrose by inversion, starting at the point where the beet has suffered an injury. Some of these injuries are avoidable but one injury, the most serious one, that due to topping, is unavoidable, even though it could be somewhat lessened.

Topping of the beet produces an open wound of greatly varying area in which the injured and the non-injured sugar bearing cells become exposed to the deleterious effects of the air and infection by micro-organisms which bring about inversion and the destruction of the sucrose thus attacked. This sugar destroying effect grows with increasing temperature, moisture of the air, length of time and size of the wound, soon the infoction spreads and, aided by the acid decomposition products which are formed at the same time, penetrates deeper and deeper into the adjoining healthy tissue, carrying in its wake further destruction of sucrose and a further increase in the organic non-sugars.

A series of carefully conducted tests were made which had as their aim the study of the decomposition losses that will occur on a light and heavily topped beet upon different length of storage. The following experimental procedure was employod:

Corpletely ripe, perfoctly healthy and non-injured beets were selected which were grown in the same field, from tho same seed, under identical soil, water and cultural conditions and which possessed, as close as it was possible
to select, the same shape and nearly the same weight. It was hopod that in meeting thesc conditions each individual beet would possess approximately the same invort to sucrose ratio at the time of harvest. We arranged for three groups of tests, each comprising five individual beets.

MIPST GROUP: Five beets were taken, the leaves were cut off as closely as possible at their base and care was taken not to injure the top of the beets. The beets were then weighed individually. The one which came nearest the average weight of the group was imediately completely shredded, the pulp thoroughly mixed and analyzod. The romaining four beets wero stored on the concrete floor of the basemont and covered lightly with a gunny sack Which was kept moist. After the lapsc of one weak one of the beets was rom moved, weighed again and analyzed. After the second, third and fourth week the procedure was repeated.

SECOND GROUP: Five beets were taken. Fach of the beets was topped close at the base of the green leaves. The area of the cut surface was measured. Each beet was weighed. The one whose weight came nearest to the average weight of the group was irmediately shredded and analyzed. The remainm der was stored alongside the beets of the first group and treated as described.

THIRD GROUP: Five beets were taken. Wach of the beets were topped just belon the base of the lowest leaf scar. Aftor measuring the area of each topping surface the procodure was the same as for group one and two.

A record was kept throughout the entire storage time of the daily average temperature and moisture of the air.

METHOD OF ANALYSES: As each boot was shredded, the pulp was thoroughly mixed. Five separate normal weight portions of the pulp were weighed out and digested with distilled water for thirty minutes at $75^{\circ} \mathrm{C}$. The Oxnard Sachs Ie Docte fector of 179.1 ml was used. The five digestion fluids were united. In a portion was detormined the imersion refractometric Brix. The remainder was clarified with Fiorne dry lead and polarized. For the deten mination of invert sugar we followed Classons procodure as follows: 110 gr . of the pulp were transferred to a 500 ml flask, 15 cc of neutral leadacetato and 2 gr of CaCO_{3} added, then filled up to nearly the mark, mixed, placed in the hot water bath for 60 minutes, cooled, made up to 500 mark and mixed. 100 cc of the decanted juice are once more clarified with neutral lead acetate, made up to 110 ml and filtered. 100 ml of the filtrate are deleaded with $\mathrm{Na}_{2} \mathrm{CO}_{3}$, made up to 200 ml and filtered. 100 ml of the filltrate $=10$ grams of original substance, are boiled with 10 ml of Fehlings solution for 2 minutes with one drop of Methylen blue solution. The still remaining blue color is then discharged by the addition of a measured volume of an 0.2% invert sugar solution. In the same manner is treated a rixture of 10 ml of Fehlings solution, 50 ml of water, 1.5 gr . of sucrose, 1 drop of methylene blue and 15 ml of the 0.2% invert sugar solution, and grauraliy more invert solution is added until the blue color is discharged. From the total ml of invert sugar solution used is subtracted the volumo of the invert sugar solution used. in the tosting of the boet pulp solution. The difference, multiplied with 0.02 , gives the invert sugar content in 100 grams of boet pulp.

The results obtained will be found in the accompanying table.

Table Showing the Changes in the Composition of Untared，Lightly and Heavily Topped Beets During
Different Storage Times．

	Untoppod Beots Free of Leaves Beets Topped at Green LeafBeese\quadBeets Topped at Base of Lowest Ledf Scar														
Beet Mo	1	？	3	4	5	－	12	3	4	5	1	12	31	4	5.
Iength of Storage in Days	－	7	14	21	28	－	7	14	27	28	－	7	14	21	28
Meight of Beet at start of Tost，Grams	577	572	57^{4}	578	580	523	500	526	530	527	470	466	466	472	478
Weight of Beet at and of storage，Grams	577	564	562	560	555	523	492	514.	512	502	470	458	455	456	455
Percent of woight lost during storage 4	－ 1	． 40	2.09	3.11	431	－	1.60	2.28	3.39	4.74	－	1.71	2.36	3.38	4.81
Avorage storage temp． throughout test period．	－	21.10	22.3	21.40	21.70	－	21． 10	22.30	21.49	21.79	－-	$27.1{ }^{\circ}$	$22.3{ }^{\circ}$	21.40	21.7°
Everage \％moisture in the air during storaso 6	61.2	58.3	58.7	50.3	42.1	61.2	58.3	58.7	50.3	42.1	61.2	58.3	8.7	50.3	42.1
Refractiometric Brix of juico in bect	21.1	21.8	21.8	22.0	22.3	21.1	21.9	22.0	21.4	22.3	21.7	22.0		22.5	22.7
\％sugar in beet 8	17.75	18.30	18.10	18.05	18.70	17.90	18.45	8.65	18.20	18.35	18.55	18.75	18.60	18.65	18.2
\％Purity of juice in bect	84.1	83.9	83.0	82.0	83.8	84.8	84.2	84.7	85.0	82.3	85.4	85.2	83.7	82.8	80.3
Invert sugar in \％ on Beets	.110	． 119	． 120	.137	． 152	.107	.131	.157	.179	． 225	． 114	.185	． 251	． 314	． 566
Ratio of invert sugar to sucrose	1.3	1：1537	81508	191317	11230	181672	$\underline{15} 408$	b1187！	21016	\＄815	51629	1013	15761	19593	1：32．2
\％increase in invert sugar ratio \qquad	－	4.7	6.5	18.3	23.7	－	15.7	28.9	39.2	51.2	－	37.7	54.5	63.5	80.2
pH of Digestion Juice 13	6.8	6.8	6.8	6.5	6.5	6.8	6.8	6.6	6.5	6.2	6.8	6.6	6.5	6.4	6．1
Area of Surface In jury in Square Continoter 14	－	－－	－	－－	$-$	15.8	15.2	15.8	16.4	16.0	25.2	24.2	24.8	25.3	26.0
Appearance of Bects at． end of storage	Per－ fect	$\begin{aligned} & \text { Per- } \\ & \text { fect } \end{aligned}$	Perm	$\begin{aligned} & \text { Per- } \\ & \text { fect } \end{aligned}$	$\begin{aligned} & \text { Per- } \\ & \text { fect } \end{aligned}$	$\begin{aligned} & \text { Per- } \\ & \text { fect } \end{aligned}$	$\begin{aligned} & \text { Per- } \\ & \text { fect } \end{aligned}$	$\begin{aligned} & 5_{1}^{1} \mathrm{y} \text { nt } \\ & \text { Mound } \end{aligned}$	$\begin{aligned} & \text { flicavy } \\ & \text { yhioul } d A \end{aligned}$		Per－	Moundy	$\begin{aligned} & \text { yrazyy } \\ & \text { Hot cut } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { Winc } \\ & \text { fover } \end{aligned}$	$\begin{aligned} & \text { hazay } \\ & \text { mill oven } \end{aligned}$
Appearanco of tissue one inch from top	Fealthy	蒠eal thy	$\begin{aligned} & \text { Foalthy } \\ & \hline \end{aligned}$	Sh	Fi.कhtiv	Fiealth	Hiva S	ightly	＋Dark est	$\begin{aligned} & \text { touito } \\ & \text { Dark } \end{aligned}$	Fieal thy	Hoalth	$\begin{aligned} & \text { SIIIGht } \\ & \text { Dark } \end{aligned}$	Darit	Quite Dark
Appearance of tissue two inches from top 17	$\begin{gathered} \text { Heal }+h \frac{1}{y} \\ \text { Hi申 } \end{gathered}$	$\text { 曹 } \mathrm{F}$	balthy		yoal thy	\％althy	$\begin{gathered} \text { icalthy } \\ \text { y } \mathrm{F} 9 \end{gathered}$	Hie		Sligh ly H dark	ieal thy		calthy	lighti dark	$\begin{aligned} & \text { Quite } \\ & \text { dark } \end{aligned}$

