Mechanical Cross Blocking
 FORD SCalle Y^{1}

The information contained in this paper reports the findings from a series of mechanically cross-blocked plots handled under the supervision of the Utah-Idaho Sugar Company. These plots were all situated in the Uipper Snake River Valley of Idaho and were well distributed throughout the 5 factory districts. Each plot was 1 acre in size and was planted with the sack-run seed through standard drills. Five'cross-blocking studies were selected which had formerly been given trials in California. These studies are are follows:

Code	Plot acreage	Block \{inches)	Centers (inches)		
A	1	4	20		To be thinned with
:---:					

The fields on which 1hese studies were conducted were selected prior to thinning. One acre of each of these fields was measured off and mechanically cross blocked, using an adjacent acre as well as the entire field as a check. The greater part of the cross blocking was done with knives; however, flat duck feet were also used and proved to be more effective. Each of these studies was replicated 8 times, and the information contained in the tables at the end of this paper deals with average of the 8 replications.

Two weeks prior to the harvest season very extensive counts were made on all of these plots in order to obtain accurate harvest data. The weights of beets as well as the total weights per block were determined by actually pulling the beets in each block and weighing them on hand scales. As will be noticed, these beets were also checked for sugar content and purity in an effort to see what, if any, influence the population of beets had on the sugar content.

On code A the sugar content as well as purity rose successively higher as the population per block increased. This, however, was not borne out: in any of the other studies. In a good many cases the average did not always show the true picture.

For example: Under code A we will note that the average tons per acre of the 8 replications was 14.393 tons per acre. This tonnage was not a fair example of the possibilities of this study. Four of the replications, through misunderstanding, were hoed practically to singles with an average of 62 beets per TOO feet of row. These 4 showed an average tonnage per acre of 11.533 . The otlier 4 which

[^0]were hoed to doubles with a small percentage of triples had an average population of 96 beets per 100 feet of row. The average tonnage of these 4 replications was 17.253 . Thus, we can readily see with this wide spacing it is imperative that doubles are left with enough triples to make up the mortality rate in machine blocking. Of the 5 studies code A showed the best results. Due to the small amount of blocks that are left there is much less work for hand labor than in the other studies. No trouble arose at topping time as these beets were all good-sized beets. The losses in non-marketable beets were negligible and the tonnage, in spite of the low population on 4 of the replications, was better than the district average. It is imperative with this study that the germination stand be quite thick as the cuts are large and any blanks that are left leave wide gaps in the beet row.

Code B also gave us a good tonnage. The populations on individual replications varied from 167 beets per 100 feet of row to 80 beets per 100 feet of row. The labor involved in thinning these with a long-handled hoe was slightly greater than that in code A. This was due mainly to the fact that there were considerably more blocks to be thinned than in code A. A rather high-mortality loss was experienced in the cross blocking, the loss being about 36 percent of a perfect stand. The majority of the blocks contained only 1 or 2 beets with only about 12 percent of total blocks containing 3 or more beets. Those blocks containing 3 or 4 or more beets resulted in an average loss in non-marketable beets of .41 of a ton. It was estimated that another 65 of a ton of small marketable beets was lost in the field.

Both code C and code D showed rather poor performances. Extremely high populations were experienced, due mainly to the fact that practically 75 percent of the blocks contained 3 or more beets, and as a result there was a very high loss in beets at harvest time. Weeding costs were higher than normal due to the extremely heavy foliage. Topping cost would in these studies prove to be prohibitive. With average populations being in the neighborhood of 225 beets per 100 feet of row and individual replications having populations as high as 330 , labor would have to top 2 and 3 times the number of beets and still get a lower tonnage than they would with standard thinning. In the case of code $\mathrm{C}, 1.41$ tons were lost in non-marketable beets and additional beets lost in topping, and in the case of code D, 1.93 tons were lost. In both cases 80 percent of the total loss came from those blocks containing 3 and 4 or more beets.

Code E showed a fair tonnage but here again losses were quite high in non-marketable beets and additional beets lost in topping. The large number of blocks left in cross blocking on 5 -inch centers resulted in a high population (176 per 100 feet of row) in spite of the fact that these plots were thinned with a long-handled hoe. This study would, undoubtedly, show better results on fields where the germination stand was not too thick. The tables are self-explanatory.

009］	08＇2I	\％＇儿	889	80\％z	080F	GI＇FI	（1） 81	108\％	0019	7298	09＇05	I $7^{\circ} \mathbf{6}$	必愐	99\％\％\％	娡愐	（3）
0817	69＇58	L＇t\％	886	9\％8	0017	2FEL	WHEI		先厂臣	878	8897	88＇L	812\％	F1＇S\％	6120	（1）
【ぐす！	00\％8	I19\％	citior	986	（0） $0^{\circ} \mathrm{F}$	\％＇2\％	Q6S5	1806	0097	81.27	00＇86	68＇ZI	88\％	8868	88\％	（2）
E＇F	OS＇9	OSII	881	ERO\％		8L＇0I	eg＇9	98.68	0 O	01＇IS	碞陖	U195	80%	2199	9\％\％	（4）
80%	（00\％$\%$	98.1	$9 L^{\prime \prime}$	82\％5	00 CI	FFO^{1}	00\％	9868	00\％\％	9698	0095	$88^{6} 7$	0G18	3＇60	$0 \mathrm{O}^{7} 78$	（च）
$\begin{array}{r} 00 \\ 0 \\ 00 \\ 00 \\ 0 \\ 0 \\ 0 \\ 0 \\ 00 \\ 0 \\ 0 \end{array}$			$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & 9 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 000 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{array}{ll} \overrightarrow{0} & 0 \\ 0 & 0 \\ 0 & 0 \\ \sigma & 0 \\ 0 & 0 \\ 0 & 00 \\ 100 \\ 0 \end{array}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \sigma \quad 0 \\ & 80 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 9 \end{aligned}$	$\begin{array}{ll} \overrightarrow{0} & 0 \\ 0 & 0 \\ 0 & \vdots \\ \sigma & 0 \\ 0 & \vec{u} \\ 0 & 0 \\ & 0 \\ 0 & 0 \\ & 0 \end{array}$		$\begin{array}{r} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 00 \\ 0 \\ 0 \\ 0 \end{array}$	$$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 6 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \stackrel{6}{3} \\ & 8 \\ & 80 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \bar{o} 0 \\ & \stackrel{0}{0} \\ & \underset{\sim}{\circ} \end{aligned}$

8joceq＋ytuavezo

H5＇68 24888 0ST 68 200\％		15875	190＇2 sadiot 1sp＇LT sis＇ol	$\begin{aligned} & \text { Esqu } \\ & \text { egs } \\ & \text { ors } \end{aligned}$				\％ $0 \mathrm{~B}^{\prime} 0{ }^{\circ}$ 09：29 S． S ［	88% $0 \mathrm{SH}_{8}$ 0G88 Siti	$\begin{aligned} & 1 \\ & 8 \\ & 6 \\ & 6 \\ & 1 \end{aligned}$	2 CO	LS\％	F	0995	（9）
gLots	18051		19 ＇t $^{\text {a }}$	綗15	00882	［碞\％	5¢L＇	$0 S^{\prime \prime 8}$	8¢\％	＋					
21828	0stilk		0ヶ゙5\％	${ }^{4} 28$	$\mathrm{e}_{6} \mathrm{C}^{\circ} \mathrm{e}$	dey	¢TS＇	$00^{\circ} \mathrm{F}$ 9	0081	g					
06\％18	970 LI	292＇ti	－ntct	818	29.87	010%	0089 5	St ${ }^{\text {ch }}$	289\％	3	ents	5	98＇	Bris	（a）
31828	2ITRI		28it	30°	00\％	$t{ }^{-1} 1$	4121	61\％	612\％	I					
090\％	48 x		8936	88.1	g6\％	axi	เ¢8	00\％8	¢\％\％	$\dot{4}$					
6L168	1009215		199\％	00.8	0028	¢80	098	0009	0095	8					
3EES	20825	889 ＇II	Lestil	186	2requ	坛时	H0＇I	0095	008	4	2＊＇63		7¢	SL＇ti	（1））
20588	90825		AXX＇9	31°	¢3\％	2N゙と	989＇5	2898	2893	I					
${ }^{0} 00048$	（10）2I		Rttit	${ }^{5} \mathrm{~F}$	Ni＇	（1a）	428	$00^{2} 9$	28＇L	\％					
18818	硟发		$9 \mathrm{ta}^{\prime} 9$	88.3	88 SI	$980 \cdot 1$	888	¢ $\mathrm{c}^{2} \mathrm{~F}$	56.8	8					
00\％ 98	09125	109\％	9Latit		Leisp	$5{ }_{5}$	ZEIT	$00^{\text {c }} 85$	96\％	\boldsymbol{z}	9898	09\％\％	16^{\prime}	\％rga	（8）
20以88	18125		\＆at＇tu	－	bub	8LIT	8 cct	80%	¢9\％	I					
29698	00 F 21		t82	（ELZ	00^{2}	89°	LT0 ${ }^{\circ} \mathrm{L}$	00%	94.						
009 L8	29025		\％ra＇s	048	88\％	¢ ¢	12II	00 zI	0007	8					
23878	18F97	888＇PT	ULE＇K	E！5	1508	590\％	69\％	00 \％	0081	6	8 COOI	929	AG＇	Se\％ 5	（\％）
9t68	zarex		2066	－	aciz	域石	Lf $\mathrm{F}^{\text {z }}$	08＇t	$0 \mathrm{C}^{1} \mathrm{~F}$	\％					
		$\begin{aligned} & \text { Co } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$									$\begin{array}{r} 00 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$				$\begin{aligned} & 0 \\ & \stackrel{0}{\circ} \end{aligned}$

100\％安	6FF＇L	LSEE 61	＋86＇ef	88%	25\％81	$369^{\circ} \mathrm{T}$	2t6	92924	\＆1＇s\％	288 Y	8200	18^{\prime}＇\％	17^{\prime}	OSyT	（3）
68818	00022	2\＆＇นL	0s6＇tsa	9288	LS＇got	06087	gus＇	28983	2\％+6	2984	602 28	60\％	6^{\prime}	$\mathrm{crgr}^{\text {\％}}$	（f）
6sciss	2br2t	898 II	040\％${ }^{\text {ct }}$	18.85	0¢FL	96\％	206	28706	\％ \％$^{\text {\％}}$	2094．4．	25\％	18.88	70	¢2\％	（3）
882\％ 88	－ITr＇2T	T0e＇s5	800＇ts	29Et	2＇30I	WN「5	EGEL	SGIII	0502	－898V	Hap	W\％t5	I6＇	8595	（a）
09888	$9 \mathrm{9tg} \mathrm{\%}$	80671	85e＇tz	SL＇9	SIT2	EF\％	E世1	Ofts	5 SK	－2985	6800	92.2	96	BR：5	（v）
		$\begin{aligned} & \text { 品 } 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				疗					$\begin{aligned} & 00 \\ & 00 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 00 \\ & \varrho 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \text { oे } \\ & 0 \end{aligned}$

Table 4．－Comparative data on non－marketable beets．

烒										
4－ineh blocks	2	1.13	1.38	294	15，80	． 306	，045			
20 －inch cemters	3	3.50	4.29	914	40.11	． 171	． 078			
	4	2.50	3.07	653	35.00	． 208	． 008	． 191	－	． 191
2%－inch blocks	2	2，13	1.75	555	14.28	． 245	． 068			
$10=$ inch centers	3	6.38	5.25	1，666	42.88	． 224	． 187			
With l．h．h．	4	6.38	5.25	1，666	42．SC	． 187	． 156	． 411	． 650	1.061
（C）	1	． 13	－	33	． 47	． 242	． 004			
2\％－inch blocks	2	2.88	1.43	751	10.62	． 232	． 087			
10 －inch centers	3	8.00	3.97	2，103	29.73	． 220	． 231			
No work	4	15.88	7.88	4，186	59.18	． 162	． 339	． 661	． 750	1.411
1\％－inch blocks	1	． 13	－	33	． 43	． 242	． 004			
8 －inch centers	2	3.13	1.38	817	10.66	． 208	． 085			
（D）	3	8.75	3.87	2，305	30.08	． 202	． 233			
No work	4	17.25	7.62	4，509	58.83	． 185	． 418	． 740	1.187	1.927
(\mathbf{E})	$\boldsymbol{r} \sim$	－	－	\sim		－	－			
1\％－inch blocks	2	2.63	1.49	686	10.63	． 280	． 096			
5 －inch centers	3	8.25	4.68	2，175	33.71	． 201	． 219			
With 1．h．h．	4	13，63	7.73	3，592	55.66	． 139	． 249	，564	． 769	1.333

Table $5 .-$ Comparative cost data

$\begin{gathered} \text { Code } \\ \text { No. } \end{gathered}$	rlot	Machine hours	Work COBC (8)	Thinning		Hocings		Topping		Totul cost (${ }^{(8)}$	Tons per ncre	Grows returne per atere (8)	Net returas deracre (\$)	Difference ins net retarns lier acre (3)
				Hours	Cost (\$)	First (\$)	sceond (易)	$\begin{aligned} & \text { tov } \\ & \text { (\$! } \end{aligned}$	cort ($\left.{ }^{(}\right)$					
(3)	(1)	1.37	1.08	11.58	4.01	2.00	1.15	.12	13.36	21.10	14.393	102.01	SL. 015	
(A)	Check	---	8.00	2.60	1.94)	s0	$1+.64$	25.64	10.372	117.06	91.418	10,413
(B)	c. k .	1.31	. 98	12.18	4.81	2.00	. 14	. 28	12.98	11.73	18.501	90.58	74.150	
(B)	Cupek	800	2.00	1,04t	So	14.28	25.28	15.979	119.15	85.070	14.220
(C)	C. B.	1.2.	. 96	.	\cdots	3.25	1.50	1.31	14.15	19.9\%	11.0\$8	\$3.57	63.680	
(C)	Check"	880	2,04	1.18	. 20	13.8	24. 53	15.335	T0P.65	84.800	21.2006
(D)	C. b .	1.28	. 90	\cdots	...	2.57	1.25	1.40	16.4	2T, 52	11.732	83.88	120.363	- 18
(D)	Cueck--	\ldots	8.00	2.00	1.40	. 81	13,\%	34,71	14.094	107.21	8\%\%.604	${ }^{20.187}$
(E)	C. B.	1.25	. 14	13.18	525	2.08	1,400	2.112	12.560	21.84	12.351	88.31	6[8.70)	
(E)	C'beck	-	...	8.00	2.00	1.04	. 51	13.28	24.28	14.517	104.01	73.730	13, 200

[^0]: UJtah-Idaho Sugar Company.

