Sugar Beet Planter Tests In Imperial Valley, Calif., Fall, 1945

G. W. HOWARDI

Purposes of Imperial Valley tests (November 20-December 20, 1945) were to do some work along the following lines:

- Standardize type of seed.
- Test planters at different rates of seeding and different speeds.
- Attempt to make mechanical recommendations based upon stands that developed.

Nine drills were tested:

- 1. John Deere No. 55.
 - a. Long curved smooth tube.
 - b. Short straight smooth tube.
- 2. John Deere low can-forerunner of Model No. 66 drill.
- I. H. C. conversion to smooth tube from No. 40 with telescoped smooth tubes.
- 4. 1, II, C. No. 46 low can drill.
- 5. Cobbley (Not the Plant-trol unit)
- 6. Rassmann
- 7. Aircraft Mechanics
- 8. Olson
- 9. Ford Ferguson

The following drifts have been considered as commercial drifts: John Deere No. 55 I. H. C. No. 40 Cobbley Rassmann

The balance should be considered as experimental drills.

We had planned to include the Case drill with their latest improved plates but were unable to do so because this equipment arrived in Brawley too late for any work to be done with it. We are, however,

¹Staff Engineer, Beet Sugar Development Foundation, Fort Collins, Colo.

carrying on experiments at the present time in cooperation with the U. S. Department of Agriculture and Colorado A & M College at Fort Collins. These late tests show that with use of a special machined filler plate and a cell plate built especially for segmented seed, the grinding of the Case planters is practically negligible.

Greased board tests were in general made at 2, 3, $4V_2$, and 0 miles per hour and at seeding rales of as close to 2, 4, 6, 8, and 10 seeds per foot as practicable.

Three replicated samples of seed from '200 feet of row were taken off the test rack alternately between each 100 inches of greased board. These samples were sent, to the laboratories for comparison with original seed samples to determine seed damage. One of these samples was sent In J. A. Hair of the Great Western Sugar Company at Fort Collins. The seed was actually counted after having been run over a 6/(i4 screen. This figure was used to determine cell fill in our various drill tests. The other two samples were sent to C. E. Cormany of Holly Sugar Corporation at Sheridan for replicated germination tests.

Field plantings were made one row at a time at 3 miles per hour only. In the drill comparisons three replicated plots of each test

Figure 1.-Loss of paltern, givased bo:iril, :t m.p.li., field.

were made. Prom each of these plots twenty 100-inch counts were made in the following manner; the first count started at 15 feet from the end of the plot and 5 feet was allowed between each 100-inch count. From these assembled data we are making the following calculations:

TOTAL BEET-CONTAINING INCHES

Single plants Double plants Three or more Longest gap Total plants in 100 inches

Figure 2.-Study of seod roll from forward drill motion.

We have also used these data to compare, in a limited way, the greased board data from the same drill. (Table 1).

We attempted to take as thorough and dependable data as possible and were unbiased in our operations. All those who worked on the Brawley tests had in mind that we were after drill and planting information in general and were not out to give any certain party a boost nor to bring discredit to any drill or organization.

Those who worked on the tests for the Beet Sugar Development Foundation, directly under P. B. Smith, were: S. W. McBirney, U. S. Department of Agriculture, A. J. Bigler, Utah-Idaho Sugar Company; Norman Lawlor, American Crystal Sugar Company; W. E. Walters, Great Western Sugar Company; E. P. Pattison, Holly Sugar Corporation; Chris Lohry, Great Western Sugar Company; and G. W. Howard, Beet Sugar Development Foundation.

We received fine cooperation from all implement people and especially from the following persons: Ti. C. Brown, agricultural

Figure 3 .- Pattern comparisons, various drills, 3 in.p.h., greased board.

superintendeni, Holly Sugar Corporation, Brawley, Calif.; Robert Barr, field man, Holly Sugar Corporation, El Centro, Calif.; H. V. Hansen, planter engineer, and George Cole of the Research staff, both of Ford-Ferguson Company; Hugo R-assmann, designer, of Diamond Iron Works; G. II. Kriegbaum, chief engineer, International Harvester Company; V. F. Bozeman, general manager, John Deere Wagon Works; Proctor Nichols, president, Aircraft Mechanics; E. F. Kratz, sales manager, J. I. Case Company; Harold J. Agee, manager, Olson Manufacturing Company; Roy Bainer, agricultural engineer, University of California; C. E. Cormany, research manager, Holly Sugar Corporatino; A. A. Schupp and Phelps Vogelsang, of Farmers and Manufacturers Beet Sugar Association; J. A. Bair, chief chemist, Great Western Sugar Company; Royt Collins, Colo.; E. M. Mervine, agricultural engineer, Colorado A & M College; -John Edmiston, factory manager, Great Western Sugar Company, Windsor, Colo. ; Roy Marsh, fieldman, Great Western Sugar Company, Windsor*, Colo.

Judging from Brawley data several points seem evident:

(1) There is no perfect beet drill to date.

(2) The greased board and electronics tester are questionable methods of testing overall drills. We did not attempt to test metering devices alone, but to test each drill as it would actually go into the field.

MILES PER HOUH

Figure 4.-Pattern and cell fill, Rassman, various seed sizes, 11/64 plates.

(3) A good formula for evaluating both pattern on the greased board and field germination stands should be developed. "We have used in our tests Roland Cannon's "Coefficient of Variability" procedure because it evaluates pattern by a relatively short method. By choosing this method, wo do not wish to discredit any other evaluation procedure. Tt does not, however, consider cell fill nor grinding of seed. These two variables will be hard to include in a pattern evaluating method.

(4) We are convinced that it is necessary to do considerable more work in getting the perfect beet seed which might include seed processing as well as seed breeding. Table 1 shows pattern comparisons with seed, used in the Imperial Valley tests.

(5) Improvements in emergence should be studied.

A considerable loss of pattern occurs between the greased board and the field. (Figure 1). Results from two common drills have been compared to show a difference of 15 to 25 percent loss. Some of this loss is a result of improper germination and some can be attributed to difference in cell fill, but a good portion, we believe, is due to the difference in forward roll of the beet seed after it leaves the moving drill. No drills on the market today take into account the forward motion of the drill in distributing the seed. This fact cannot be overlooked in explaining the difference between greased board results and actual field plantings. To try to pin this roll value down we have just completed some tests at Windsor. (Figure 2). These results did not turn out exactly as expected but are nevertheless somewhat revealing.

The best value in coefficient of variability was obtained by stitching a 12 inch piece of 8 ounce dam canvas in the center and bonding the two edges outward, nailing them on the 6 inch board. This "V"

CELLS PER FOOT

Table 1.--Pattern comparisons greased board, Imperial Valley planter tests. Miles per hour Seeding rate 2.1 cells per foot.

	2 m.	D.D.	8 т.р	. h.	4.5 ra	9.b.	6 m.թ.h.		
Pianter	Rate	Cof. of variability	Aute Seeds per foot	Cof. of variability	Rate Seeds yer foot	Cuf. of warfability	Kate Meda per foot	Cof. of variability	
Cobbley			2.6	.64	2.6	.86	2.6	.92	
Cohbley			4.35	.56	4.3	.68	4.8	.72	
Cobbley			6.00	.62	8.0	.63	0.0	.72	
Cobbiey			7.5	.60	7.5	. 68	7.4	.66	
Cobbley			9.0	.68	9.0	.70	9.0	.70	
I.H.C. No. 40-shoe	2.1	.81	2,1	.55	2.1	.57			
I.H.C. No. 40—shoe	3.6	.67	3.4	.71	3.6	.69			
I.H.C. No. 40-ahue	5.6	.61	5. 6	.66	5.6	.92			
I.II.C. No. 40-shoe	7.8	.70	7.8	.76	7.8	.87			
I.H.C. No. 40-shoe	9.8	.77	P.8	.78	19.H	,78			
J.D. low can, curved tube			2.6	.71	2.6	.69	2.56	.79	
J.D. low can, curved tube			4.3	,80	4.29	.78	4.29	.09	
J.D. low can, curved tube			6.42	- <u>9</u> 0	6.42	.×7	6.42	.86	
J.D. low can, curved tube			8.1	,73	8.1	.87	8.1	.83	
J.D. low can, curved tube			10.0	.68	10.0	.85	10.0	.99	
J.D. No. 55, McBirney tube	12		2.6	.66	2.6	.75	2.6	,77	
J.D. No. 55, McBirney tube	•		4.3	.73	4.5	,81	4.3	.98	
J.D. No. 55, McBirney tub	6		6.1	.00	8.L	.84	ŧ.,	.85	
J.D. No. 55, McBirney 1450			7.4	.83	7.4	.87	7.4	,71	
J.D. No. 55, MCBirney full	e 		10.9	.72	1.4	.82	9.4	.90	
I.H.C. NO, 46 10W can	2.1	.64	2.1	.21	2.1	.75			
1.H.C. NØ 46 JOW CSD	5.0	. []	3.0		3.0	.86			
1.11.0. No. 46 10W Cult	0.0 0.0	. (4	2.6	.10	0.0 7.0	- 12			
1.21.C. NO. 40 10W C40	4-0		1.5	-10	1.0				
Oner	1), A	. (9	0.5		0.5	.05			
Oleon	6 m		6.0	- 107	8.0	70			
Olaon	0.4	70	0.4	. 419	0.1	.10			
Proprint 7/10	0.1	71	N.1	.10	0.1	71			
Passmann 9/10	9.1		8.1 8.1		91	79			
Resinaun 9/10	81	73	8.1	.0x3 AD	51	83			
TD No 55 low curved tube	0,,,		9.6	45	98	617	5.0	75	
J D No. 55 low curved tube			4 3	77	4.5	74	4.3	81	
J.D. No. 55 low curved tube			6.1	76	6.1	.84	6.1	.81	
J.D. No. 55 low curved tube			9.4	-688	8.4	.85	8.4	95	
J.D. No. 55 low curved tube			7.4	.72	7.4	.61	7.4	.77	
I.H.C. No. 40 spiral tube	21	.91	2.1	.81	2.1	.71 -			
Aircraft Mechanics	12.0	.70	12.0	.69	12.0	.81			

canvas immediately wedged the seed as it came out of the seed tube and apparently eliminated any roll or distortion whatsoever. Another canvas board was then tried which had a round bottom allowing the seed to roll. The coefficient of variability of this board and the greased hoard came out practically the same but about 8 percent worse than the "V" canvas, indicating that if the seed roll was present it was all approximately equal when no obstructions were present. We then ran the latter board under two other conditions, first with interference particles spaced along the board and second, with the discs actually turning on the board. These two boards gave patterns almost identical but about 10 percent less favorable than the

Figure G .- Flexible tube-smooth tube comparisons, I. H. C. No. 40.

nter	tusi puunda uf 7/9 accd ki per sere*	eorrifeel cells : foot row	ent actual fill	เป็นประเทณีออกกรี่ยุกรอบใจ 2004 feet อรักอพ ⁶⁴	al potential sprouts fill feet of row	երելու ներերու ներեր 8/04 Առումեր թեր 100 Մի քնջա	l aprouts per 100 feet. эж after pêssing ring device	Kproule lost per 100 Loet of raw		al sprouts per 100 foct of a after prasing motering (a after prasing of retical seeding	
1'la	Act	Th	Le Ce]	Act Ped	Ê Ê	25	101	No.	Percent	8 6 6 8	
I.H.C. No. 40	1.40	2.1	149	313	307	203	261	46	13	124	
	4,89	3.6	145	522	572	484	421	91	18	117	
	3.38	5.6	135	755	740	703	383	157	21	104	
	5.18	7.8	148	1.156	1,133	1,065	S31	302	27	107	
	6.29	9.8	143	1,401	1,873	1,297	1.051	322	23	107	
I.H.C. No. 46	1.76	2,1	187	302	384	369	530	45	12	161	
	3,98	5.6	159	893	875	842	775	300	11	138	
	4.83	7.8	138	1,075	1,054	2,012	911	143	34	117	
	5.81	9.8	132	1,289	1,2953	1,219	1.134	120	10	116	
Olson	1.04	0.5	67	437	428	471	345	\$3	19	53	
	2,05	8.0	82	654	641	617	543	98	15	69	
	2.77	9.4	66	621	(88)	601	421	188	31	45	
Rassmann 7/10		8.1	145	1,174	1,151	1.127	992			122	
*** 8/10		8.1	113	917	Sila	880	747			92	
9/10		8.1	101	815	756	×н	852			105	
Aircraft Mechanics	5,60	12.0	111	1,336		1,007	768			64	

Table 2.--Comparison of various planters at 2 miles per hour (grease board test), Brawley, Calif., test.

*Percent cell fill considered in computations.

**Based on average of three tests of 200 feet each.

***Only 11/64 plates available.

greased board and plain round bottom canvas board. These tests are preliminary but we believe they point towards a method of evaluating seed roll.

If we establish lhat the forward seed roll is harmful to field seed distribution we need a standard of measuring pattern to test overall drills. Our thinking has gone as far as to design a pilot experimental seed metering device which will induce backward rotor speed equal to the forward drill motion allowing seed to drop in a dead fall without forward or backward motion. We expect trouble with cell fill and knockout with this new design but we have taken steps to solve lhese problems. With this experimental model we plan to do some work in the canvas board and on the greased board. If our results are somewhat equal we believe we will have accomplished something important in the testing of the drill as it goes into the field.

Tn comparing pattern values (Figure 3) from the greased board we note that the Cobbley is higher than the other drills. A similarity of the John Deere long curved tube and the John Deere low can lines

2 ⁹ innter	Actual pounds of 7/D seet nsed per sere*	Theoretical culla per foot tow	l'orcent actual ail fil	Actual number of seeds ner 106 feet of row**	Total potential sprouts for 100 feet of row	Swed pieces furger than 4/04 remaining per 100 feet of row	Total sprouts per 100 foet of row offer passing metering duvice	 	Sprouts lost luir Sprouts lost ut row Lecter of row	Protal sprents per 100 feet of row after passing metering device as percentage of theoretical seeding	Total plants scnerging Per 100 feet of row in fleidawe	Percent emergence in field	l'ercent of single best containing inches
1.H.C. No. 40	1.47	2.1	156	327	320	304	255	65	20	121	189	90	84
	2,19	8.6	137	404	484	455	382	102	21	106	324	10	-80
	3.28	5.6	131	732	717	851	581	186	26	85	476	82	79
	4.69	7.8	134	1045	1024	975	780	244	24	100	616	78	74
	5.85	9.8	133	1205	1270	1222	831	448	25	85	727	72	68
1.H.C. No. 46	1.63	2.1	173	304	357	344	209	3 S	16	142	0.00	120	85
	2.67	3.6	167	600	388	561	±82	106	18	134	385	107	80
	4.05	5.6	162	905	887	856	710	177	20	127	515	92	77
	4.59	7.8	131	1019	906	958	843	153	15	108	656	51	71
	5.02	9.8	114	1121	1000	1067	756	363	33	75	727	72	67
J. D. Low Can	2.28	2.56	190	48T	477	160	366	91	10	151	302	116	S5
(curved tube)	8.42	4.5	159	777	761	721	634	127	17	147	451	105	79
	4.12	6.4	142	DY18	200	86A	685	205	23	107	640	100	73
	-1.93	8.1	137	1111	1689	1054	780	300	25	96	779	95	68
	8.21	10.0	138	1377	1340	1305	040	109	30	અ	S09	67	65
J. D. No. 55	2.00	2.6	167	434	425	405	369	56	13	142	318	138	86
(long curved	3.14	4.3	165	708	(6)4	665	588	106	15	137	4 11	105	80
rube)	4.40	0.1	163	992	972	939	808	164	17	132	573	97	73
	1.95	7.4	150	1108	1086	1048	838	248	23	113	670	90	72
	5.75	0.4	137	1235	1250	1219	59 0	369	29	95	564	92	65

Table 3 .- Comparison of various planters at 3 miles per hour (grease hoard and field tests), Brawley, Calif., test.

.

Table 3.-Continued.

Orbhian		1 88	 0.0	157	100	400	949		102	96	114	193		ผ
CODOINT		1.00	2.0	101	110		410	241	100	90	195	979	76	81
		3.19	1.3	160	118	000	042	914	190	20	120	210		
	4	i.1 0	6.0	153	914	896	818	677	217	24	118	462	14	- 10
	:	5.03	7.5	148	1107	1085	294	815	270	25	114	536	70	76
		5.64	0.0	141	1272	1247	1153	842	405	32	94	675	72	23
Olson	1	1.86	0 .5	64	410 *	-111	864	306	105	26	-17	175	27	88
		2.12	8.0	59	471	462	406	357	105	23	45	185	28	\$6
	3	1.72	9.4	1 1	387	379	358	347	132	55	26	131	14	80
Ваяв лларт	7/10	-	1.8	127	1028	1007	997	806			100	616	82	66
****	8/10		8.1	106	878	358	355	907			112			
	9/10		6.1	75	808	596	597	669			85			
Aircraft														
Mechanic		5.89	12.0	100	1305		1060	670			56	812	26	82

-

*Percent cell fill considered in computation.

**Based on average of three tests of 200 feet each.

Bosed on average of 60 field counts of 100 inches each. *Ouly 11/04 plates available.

.

Pijaatee	Actual pounds of 7/9 seed used per acro	Theoreticni cells per foot row	Percent actual cell fill	Actual bumber of spreads per 100 Geet of row**	Total potential aproves per 100 fact of row	Seed pirves larger (han 8/04 renulling pro 100 feet of row	Thutul sprouts per 100 feet of row after passing metering Jevice	No.	Mor Jo 1991 001	Total sprouts per 100 feet of the structure of the second device; as preceding of theoretical seeding
L.H.C. No. 40	1.35	2,1	144	303	297	285	239	5 8	20	114
	2.10	3.6	131	471	462	437	363	66	21	102
	3.23	5.6	129	725	711	077	528	183	25	64
	3.82	7.8	112	873	856	815	644	212	25	83
	+.36	9.8	99 •	975	956	913	630	326	54	65
I.H.C. No. 46	1.65	2.1	176	360	362	352	268	94	26	128
	2.53	3.6	158	50S	557	534	427	130	23	119
	3.55	5.6	142	293	777	751	571	206	27	102
	3.92	7.8	112	873	856	828	620	227	27	81
	3.70	9.8	84	828	811	810	616	195	24	63
J. D. Low Can	2.11	2.6	176	457	448	432	346	102	23	183
(curved tube)	3.17	4.8	107	720	706	684	575	131	19	134
	4.06	6.1	140	893	875	843	468	209	24	104
	4.78	8.1	132	1,069	1,048	1.019	836	212	20	103
	1.86	10.0	108	1,075	1,054	1,029	772	282	27	77
J. D. No. 55 (long	1.94	2.0	162	121	418	403	363	50	12	140
curved (ube)	3.17	4.3	167	718	704	687	598	106	15	139
	2.86	11.1	100	649	636	625	506	180	20	83
	4.03	7.4	122	901	853	863	720	163	18	97
	4.55	B.4	113	1,065	1,044	1,031	814	230	22	87

_

Table 4.-Comparison of various planters at 4% miles per hour (grense bound test), Brawley, Calif., test.

Table 4.-Continued.

Cobbley		2.09	2.6	174	452	443	414	330	104	23	130
•		2.03	4.3	154	663	650	602	506	144	22	118
		3.92	6.0	145	872	855	769	646	209	24	108
		4.65	7.5	137	1.025	1.005	912	812	193	10	109
		4.96	9.0	124	1,120	1.096	995	816	282	26	91
Oison		2.61	8.5	90	582	570	442	371	190	35	57
		2.45	8.0	GB	545	534	391	344	190	36	43
		1.55	8.4	37	350	343	247	173	170	50	18
Rassma	nn 7/10		8.1	101	517	801	771	063			82
149	8/20		8.1	101	770	755	740	697			86
	9/10		8.1	70	569	558	558	547			68
Aircraft	Mechanic	3.67	12,	8	820		631	485			36

•Percent cell fill considered in computations.

***Only 11/64 plates available.

-

**Based on average of three tests of 200 fort each.

ter	a used per acre" ual pounds of 7/0	orștical cella Gont row	cent notuul (1)	ual number of sprouts the of row**	Tatal potential sprouts Der 100 feet of cow	Seed picces larger than 6/64 zenalming por 100 feet of row	(2) Aprouts per 100 feet any after pasaing tering device	Societia lost per 108 feet of row		al sprouis per 100 feet of atter passing meterlog tee: as percentage of oretleal seeding
Pia	Act	Ther	5	Act			e fe	No.	Percent	5 5 5 5
J. D. Low Can	2.32	2.6	193	502	492	+17	867	125	25	141
(curved tube)	3.14	4.3	165	711	607	671	510	187	27	119
	3,36	6.4	116	742	727	707	544	185	25	85
	1.50	8.1	125	1,015	995	968	755	240	24	93
	2.97	10,0	66	662	6H.B	635	418	230	35	42
J. D. No. 55 (long	1.88	2.6	157	409	401	894	339	62	15	130
curved tube)	2.70	4.3	142	610	738	585	487	111	19	113
	3.38	61	125	763	748	740	585	163	22	96
	3.75	7.4	113	634	SET	810	004	153	10	90
	3.86	9.±	92	863	846	840	622	224	28	66
Cobbley	1.80	2.6	155	404	390	369	306	90	23	118
-	2.76	4.3	145	624	612	កូផង	部時	109	18	117
	- 3.46	6.0	128	760	754	600	č\$14	160	21	80
	4.25	7.5	125	085	914	843	750	166	18	100
	4.4	0.0	110	994	974	885	673	301	31	75

Table 5 .-- Comparison of various planters at 6 miles per hour (grease board test), Brawley, Calif., test.

*Percent cell fill considered in computations.

**Based on average of three tests of 200 feet each.

***Ogly 11/84 plates available.

is noted. The John Deere Xo. 55 long curved tube seems to have a slight pattern advantage over the shorter straight tube.

A strange pattern evaluation eame from a study of the Rassmann planter using different sized seed in their 1.1/64 inch rotor. (Figure 4). Note that the pattern is better using 7-10 seed at high cell fill than when closer graded seed was used. We were somewhat surprised at this result.

A cell fill study was made (Figure 5) of several drills at 3 m.p.h. showing a John Deere average of around 150 percent, Cobbley 140 percent and I. H. C. No. 40 al 130 percent. In all of these there is a definite decrease at higher seeding rates.

It is an accepted fact that the smooth tube gives a better pattern than the flexible spiral tube (Figure 6) but we also made a comparison from our laboratory studies. The difference at 2 m.p.h. is shown as about 30 percent and at 3 m.p.h. reading values differ by about 25 percent. Due to the fact that these are laboratory differences the field differences will most surely be more because of air current interference with the flexible spiral tube.

A good study of seed damage was made using a fi/64th screen and calling the plusses undamaged seed and the minuses as the damaged units. Table 3 shows the Cobbley to be the worst offender in this category as compared with the various other commercial drills. The John Deere No. 55 can seems to be acceptable from this angle.

The laboratory germination data on seed used is shown in Table 6.

Seed	Units per pound	Normal sprouts per viable seed ball	Sprouts per 100 seed balls	Percent singles	Percent emer- gence on potential
U. S. No. 22 7(1 Whole U. S. No. 22	60,«63	112	88	70	66
7 9 Segmented TT. S. No. 22	60.28S	1.27	89	79	62
7-10 Segmented U. S. No. 22	56,592	1.39	113	09	50
11-13 Pellets (from 7-9 segmen	5.700 ted*	1.18	52	82	85

Table 6 .- Imperial Valley seed comparison test :it 3 m.p.h.

We are not prepared to make any statement condemning or appraising any particular drill but the facts disclose that there are apparent weaknesses in all of the drills which we tested and that further work needs to be done to develop improvements in their performance.