Summary of Fertilizer Results—1949

ANDREW R. DOWNIE¹

The territories served by the American Crystal Sugar Company are widely scattered. For this reason the fertilizer requirements are not the same for all places. Fertilizer tests, therefore, have to be planned for the particular area. The tests as conducted in 1949 will be taken up by areas.

Tests in the California Area

As has been previously pointed out $(1)^2$, the general fertilizer practice in this area is to apply liberal applications of nitrogenous fertilizers either at the time of seed bed preparation or as a side dressing shortly after thinning. These practices generally result in increased tonnage and in some cases a decreased sugar content.

Two tests are reported from this area, one conducted in the San Joaquin valley and the other near Clarksburg, California. Table 1 gives the fertilizer, pounds of plant food per acre and the yields obtained in the test conducted in the San Joaquin valley at Visalia. This test was planted as a 10x10 Latin square but since only six complete blocks could be harvested it is analyzed as a randomized block.

Although all treatments except the heavy rate of the 16-20-0 show higher tonnages than the check, only the three rates of ammonium sulfate and the two higher rates of 10-10-5 appear to be profitable.

Lbs. Plant Fertúlizer Food per Acre,		Tons Beets % per Acre Sucrose		Lbs. Suga per Acre	
21-0-0	-45	35.66	13.63	9,721	
21-0-0	60	94.49	15.28	9.162	
21-0-0	30	55.5 I	19.34	8,941	
10-10-5	45	32.09	13.28	8,524	
10-10-5	60	32.27	13.04	8,415	
16-20-0	45	31.95	12.73	8,140	
10-10-5	30	31.15	12.91	8.042	
16-26-0	30	30.84	12.85	7.927	
Check		29.84	13.16	7.865	
16-20-0	60	30.27	12.54	7,591	
General Mea		32.21	15.08	5.424	
Sign, Diff. (.	19:1)	4,84	J.03	1,505	

Table 1.	Results of	San	Joaquin	Fertilizer	Plot	Test-	1949
----------	------------	-----	---------	------------	------	-------	------

The other test reported in this area was carried out near Clarksburg on a semi-peat soil. All of the fertilizers were applied at the rate of 75 pounds of plant food per acre. The results are given in Table 2.

Only the 16-20-0 and the 0-43-0 fertilizers gave a significant increase in vields over the unfertilized treatment.

Arkansas Valley, Colorado, Area

The tests in this area were in the form of strip tests in farmers' fields. Five fertilizer combinations were applied on twelve row strips running the entire length of the field with two such strips for each fertilizer treatment

¹/₈ Plant Pathologist, American Crystal Sugar Company, Rocky Ford, Colorado. Numbers in parentheses refer to literature cited.

AMERICAN SOCIETY OF SUGAR BEET TECHNOLOGISTS

Fertllizer	Tons Beeu per Acre	% Sucrose	Lbs. Sugar per Acre
16-20-0	27.95	15.34	8,574
0-43-0	26.74	15.23	8,146
21-0-0	24.72	15.48	7,652
10-10-5	24.41	14.92	7,283
0-0-0	23.68	15.29	7,244
6-12-6	24.83	14.56	7.240
General Mean	25.59	15.14	7,690
Sign. Diff. (19:1)	2.88	1.13	1,020

Table 2. Results of Clarksburg Fertilizer Plot Test-1949

at each location. The data for the four locations were combined and the analysis is presented in Table 3.

Fertilizer	Rate per Acre	Tons Beeu per Acre	% Sucrose	Lbs. Sugar per Acre
0-43-0	250	15.92	15.22	4,823
16-20-0	300	15.99	14.86	4,694
0-13-0 and				
20-0-0	175-150	15.20	15.11	4,573
4-24-4	355	14.71	15.58	4,545
6-30-0	300	14.78	15.85	4,470
0-0-0		14.16	15.86	4.326
General Mean		15.12	15.25	4,572
Sign. Diff. (19	9:13	1.57	.49	501

Table 3. Arkansas Valley Fertilizer Strip Tests—1949 Average of Four Locations

The results obtained fall in line fairly well with fertilizer results obtained over the past five years. It may be noted that the highest phosphate fertilizer resulted in the highest yield and that the highest application of nitrogen fertilizer tended to reduce sucrose percent in the beets.

Northern Iowa-Southern Minnesota Area

The tests in these two areas were conducted in the same manner as those for the Arkansas valley except that there were no unfertilized treatments. The beneficial response to fertilizers is so general in these areas that the farmers object to having unfertilized strips in their fields.

The results for the strip tests in Northern Iowa are presented in Table 4 and for Southern Minnesota in Table 5.

Fertilizer	Rate per Acre	Tons Beets per Acre	% Sucrose	Lbs. Sugar per Atre
4.21.4	187	14.48	17.26	4,981
3-18-9	251	13.57	17.46	4,723
0-43-0	188	13.87	17.04	4.706
13-28-0	193	13.53	17.09	4,613
33-0-0	144	13.07	16.40	4,258
General Mean	n	13.70	17.05	4,856
Sign, Diff, ()	9:1)	1.25	.50	390

Table 4. Northern Iowa Fertilizer Strip Tests—1949 Average of Five Locations

Fertilizer	Rate per Acre	Tons Beets per Acre	% 511cTu3#	Lbs. Sugar per Acre
4-24-4	235	13.52	15.98	4,295
20-0-0	200	12.43	16.25	4,029
0-43-0 and				
20-0-0	100-100	12.31	16.24	3,987
3-18-9	250	12.53	15 85	3,977
0-43-0	175	12.21	15,95	3,879
General Mean		12.60	16.05	4,034
Sign, Diff. (I	9:1)	.58	.37	165

Table 5.	Southern Minn	esota F	ertilizer	Strip	Tests-	-1949
	Average o	f Three	Locati	ons		

In both areas the outstanding fertilizer was 4-24-4. Similar results have been obtained for the last four years of testing.

Red River Valley, Minnesota

High phosphate fertilizers have given the best performance in this area Almost universally the beet crop is preceded by summer fallow which in turn was preceded by a green manure crop. The nitrogen content of the soil seems to be quite adequate since small increments of this nutrient tend to depress sugars somewhat. The results for this area are presented in Table 6.

The results of this year's testing indicate that 0-36-8 and 0-43-0 give the greatest yield increment.

Fertillzer	Rate per Acre	Tons Beets per Acre	% Sucraw	Lbs. Sugar per Acre
0-36-8	150	19.17	17.72	4,606
0-43-0	150	13.07	17.38	4,541
2-32-8	150	12.95	17.31	4.461
4-24-4	200	11.58	17.37	1.025
General Mean		12.70	17.45	4,423
Sign. Diff. (1	9:1)	.80	.52	303

Table 6.	Red	River	Vall	ley F	ertilizer	Strip	Tests-1949	9
		Avera	ge o	of Six	Locati	ons		

Summary

The fertilizer test in the San Joaquin valley emphasizes the need for high nitrogen fertilizers while the test on semi-peat soil at Clarksburg, California, showed that phosphate was needed in the fertilizer mixture.

High phosphate fertilizer is required for maximum yields in the Arkansas valley, Colorado.

The complete fertilizer 4-24-4 gave the highest yield increment in Northern Iowa-Southern Minnesota area.

The highest yields were obtained in the Red River valley, Minnesota, with high phosphate fertilizers. Even small increments of nitrogen tend to lower sucrose and yield.

Literature Cited

 DOWNIE, A. R. Summary of Fertilizer Results, 1947. Proc. Am. Soc. Sug. Beet Tech. pp 421-426. 1948.