American Society of Sugar Beet Technologists Biennial Meeting March 5, 2011

Dietary Sugars and Diet Quality

Charles Baker Executive Vice President & Chief Science Officer Sugar Association

Background

THE UNITED STATES FOOD ADMINISTRATION sale yes in get behad our unlikes. makes and Alias by sending them now the most find possible in the least shoping space. New max woman and tshill in Answer: can help by sening for when, beef, joint, fins and sugar, more of other plenning foods which can not be stopped, and by preding sease.

<text><section-header><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text>

Write in the AddressionAP. TO EAST 14255 MEAT Because of the lack of folder and the investment one of one to find the indicity and war working. France, Green Brinnin, Intri and Belginn bases on hand using rapiconces these hand of star-than they had before the star. Their bench are will decreasing much worst the first flat war are more starling them there insers, much worst the first flat war are now starling them there insers a start thin year than a rever before. We must stard them more much worst the start, we have the start.

WHY IT IS NECESSARY TO EAT LESS FATS

The chief source of fast for scaling is in dairy products. We want the server source of the server as source of choice more than a blance how more of the server at moch shaller and the more and the server and the server at moch shaller and the server and the server at moch shaller and the server at more than a server

TEAT LESS SUGAR TEAT LESS SUGAR Cor down on cash and ever disk. Early half as much sweets a before and you are still eating more than the Englishman or Forefinence areas. The house, maybe sings and corn sings on the breakfur table Server constraints froming or iring. Early plong of feals. If energy reveals in froming or iring. Early plong of feals. If energy reveals in froming or iring. Tar plong of sight a day one shifters, subset and Allies will be provided for matching are served.

Eat plenty, wisely, without waste, and help win the war

Mindset of empowerment

GLOBAL STRATEGY on Diet, Physical Activity and Health

In May 2004, the 57th World Health Assembly (WHA) endorsed the World Health Organization (WHO) Global Strategy on Diet, Physical Activity and Health. The Strategy was developed through a wide-ranging series of consultations with all concerned stakeholders in response to a request from Member States at World Health Assembly 2002 (Resolution WHA55.23).

The Strategy, together with the Resolution by which it was endorsed (WHA57.17), are contained in this document.

WHO Technical Report Series 916

DIET, NUTRITION AND THE PREVENTION OF CHRONIC DISEASES

Report of a Joint WHO/FAO Expert Consultation

Geneva 2003

Nutrient Displacement Model

Dietary Guidelines Advisory Committee

Prepared for the Committee by the Agricultural Research Service

-8

United States Department of Agriculture

Report of the Dietary Guidelines Advisory Committee on the Dietary Guidelines for Americans, 2000

To the Secretary of Health and Human Services and the Secretary of Agriculture

September 2002

INSTITUTE OF MEDICINE

Shaping the Future for Health

DIETARY REFERENCE INTAKES FOR ENERGY, CARBOHYDRATE, FIBER, FAT, FATTY ACIDS, CHOLESTEROL, PROTEIN, AND AMINO ACIDS

nlike vitamins and minerals, which sometimes perform unique functions to meet the body's needs, fats, carbohydrates, and proteins substitute for one another to some extent to meet the body's energy needs. In a recent report released by the Food and Nutrition Board of the National Academies, acceptable ranges of intake for each of these energy sources are set, based on evidence that consumption above or below these ranges may be associated with nutrient inadequacy and increased risk of developing chronic diseases, including coronary heart disease, obesity, diabetes, and/or cancer. For example, studies have shown a connection between low-fat, and therefore, high-carbohydrate diets and decreased high-density lipoprotein cholesterol in the bloodstream, a physiological indicator associated with increased risk of coronary heart disease. Conversely, diets too high in fat may result in increased caloric intake, and therefore lead to obesity and its complications.

The report, titled Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids, is the sixth in a series providing Dietary Reference Intakes (DRIs) developed jointly by American and Canadian scientists, and focuses on carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids, collectively known as the macronutrients, as well as energy and physical chronic disease, adults activity. The report recommends that to meet the body's daily nutritional needs while minimizing risk for chronic disease, adults should consume 45 to 65 percent of their total calories from carbohydrates, 20 to 35 percent from fat, and 10 to 35 percent from protein. The acceptable ranges for children are similar to those for adults, except that infants and younger children need a somewhat higher proportion of fat in their diets. These ranges may be more useful and flexible for dietary planning than single maximum values recommended in the past.

...to meet the body's daily energy and nutritional needs while minimizing risk for should consume 45 to 65 percent of their total calories from carbohydrates, 20 to 35 percent from fat, and 10 to 35 percent from protein.

Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. September 2002. Table J-1.

The Sugar Association, Inc.© November 2002

Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. September 2002. Table J-1.

The Sugar Association, Inc.© November 2002

September 2002

INSTITUTE OF MEDICINE

Shaping the Future for Health

DIETARY REFERENCE INTAKES FOR ENERGY, CARBOHYDRATE, FIBER, FAT, FATTY ACIDS, CHOLESTEROL, PROTEIN, AND AMINO ACIDS

Inlike vitamins and minerals, which sometimes perform unique functions to meet the body's needs, fats, carbohydrates, and proteins substitute for one another to some extent to meet the body's energy needs. In a recent report released by the Food and Nutrition Board of the National Academies, acceptable ranges of intake for each of these energy sources are set, based on evidence that consumption above or below these ranges may be associated with nutrient inadequacy and increased risk of developing chronic diseases, including coronary heart disease, obesity, diabetes, and/or cancer. For example, studies have shown a connection between low-fat, and therefore, high-carbohydrate diets and decreased high-density lipoprotein cholesterol in the bloodstream, a physiological indicator associated with increased risk of coronary heart disease. Conversely, diets too high in fat may result in increased caloric intake, and therefore lead to obesity and its complications.

The report, titled Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids, is the sixth in a series providing Dietary Reference Intakes (DRIs) developed jointly by American and Canadian scientists, and focuses on carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids, collectively known as the macronutrients, as well as energy and physical activity. The report recommends that to meet the body's daily nutritional needs while minimizing risk for chronic disease, adults should consume 45 to 65 percent of their total calories from carbohydrates, 20 to 35 percent from fat, and 10 to 35 percent from protein. The acceptable ranges for children are similar to those for adults, except that infants and younger children need a somewhat higher proportion of fat in their diets. These ranges may be more useful and flexible for dietary planning than single maximum values recommended in the past.

...to meet the body's daily energy and nutritional needs while minimizing risk for chronic disease, adults should consume 45 to 65 percent of their total calories from carbohydrates, 20 to 35 percent from fat, and 10 to 35 percent from protein.

Dietary Guidelines for Americans 2005

U.S. Department of Health and Human Services U.S. Department of Agriculture www.healthierus.gov/dietaryguidelines

¹Journal of Nutrition 134(10): 2733 – 2737, 2004. Adapted from Figure 4.

© The Sugar Association, Inc. October 2004

Published, peer-reviewed evidence

Dietary Guidelines for Americans 2005

U.S. Department of Health and Human Services U.S. Department of Agriculture www.healthierus.gov/dietaryguidelines

Discretionary Calories Model

Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. September 2002. Table J-4.

The Sugar Association, Inc.© November 2002

Indecipherable Acronym – 2005

<u>Solid Fats + Alcohol + Added Sugars + Sodium</u>

NUTRIENTS TO AVOID

Report of the Dietary Guidelines Advisory Committee on the Dietary Guidelines for Americans, 2010

Discretionary Calories Hypothesis

Discretionary Calories Hypothesis

Memorable Acronym – 2010

<u>Solid Fats + Added Sugars</u>

NUTRIENTS TO AVOID

Table 1. Estimated per capita calories from loss-adjusted food supply ⁶										
	Calo	pries	% of	Total	% of 1970 – 2005 Calorie Increase					
	1970	2005	1970	2005						
Added Fats	411	645	18.94	23.74	42.9					
Added Sugars	402	480	18.50	<mark>17.65</mark>	14.3					
Total	2,172	2,718								

Table 3. Estimated per capita calories from loss-adjusted food supply ⁶										
	Calc	pries	% of	Total	% of 1970 – 2007 Calorie Increase					
	1970	2007	1970	2007						
Added Fats	411	710	18.94	25.59	49.6					
Added Sugars	402	459	<mark>18.50</mark>	<mark>16.55</mark>	9.5					
Total	2,172	2,775								

0		NHANES, 2001 - 2002 NHANES, 2003 - 2004								NHANE 6, 2005 - 2006						
Sex	Age Range, Years	Total Calories	Total Sugars, g	TS ÷ TC	Added Sugars, g	AS ÷ TC	Total Calories	Total Sugars, g	TS ÷ TC	Added Sugars, g	AS ÷ TC	Total Calories	Total Sugars, g	TS ÷ TC	Added Sugars, g	AS ÷ TC
Males	2 - 5	1733	135	31.2%	74	17.0%	1679	128	30.5%	70	16.7%	1641	122	29.7%	67	16.3%
	6 - 11	2108	153	29.0%	84	15.9%	2256	161	28.5%	88	15.6%	2092	142	27.2%	78	14.9%
	12 - 19	2684	195	29.1%	107	15.9%	2652	176	26.5%	96	14.5%	2707	177	26.2%	97	14.3%
	20 - 29	2901	184	25.4%	101	13.9%	2969	179	24.1%	98	13.2%	2821	160	22.7%	88	12.4%
	30 - 39	2872	172	24.0%	94	13.1%	2888	162	22.4%	89	12.3%	2978	153	20.6%	84	11.2%
	40 - 49	2748	150	21.8%	82	11.9%	2873	161	22.4%	88	12.3%	2753	141	20.5%	77	11.2%
	50 - 59	2426	146	24.1%	80	13.2%	2388	121	20.3%	66	11.1%	2597	143	22.0%	78	12.0%
	60 - 69	2211	117	21.2%	64	11.6%	2109	107	20.3%	59	11.1%	2202	114	20.7%	62	11.3%
	70 and over	1889	105	22.2%	57	12.2%	1868	105	22.5%	57	12.3%	1984	109	22.0%	60	12.0%
	20 and over	2621	154	23.5%	84	12.9%	2612	145	22.2%	79	12.1%	2638	141	21.4%	77	11.7%
Females	2 - 5	1560	117	30.0%	64	16.4%	1759	129	29.3%	71	16.0%	1486	112	30.1%	61	16.5%
	6 - 11	1856	133	28.7%	73	15.7%	1964	132	26.9%	72	14.7%	1879	124	26.4%	68	14.4%
	12 - 19	1981	146	29.5%	80	16.1%	2007	136	27.1%	74	14.8%	1906	124	26.0%	68	14.2%
	20 - 29	2055	135	26.3%	74	14.4%	2103	136	25.9%	74	14.1%	1959	118	24.1%	65	13.2%
	30 - 39	2014	133	26.4%	73			14	23.3%	62	12.8%	1923	104	21.6%	57	
	40 - 49	1874	114	24.3%	62		4.0%	0 ₁₇	24.2%	64	13.2%	1873	103	22.0%	56	I ∡
	50 - 59	1751	104	23.8%	57	13.0	1728	95	22.0%	52	12.0%	1718	90	21.0%	49	11.5
	60 - 69	1640	91	22.2%	50	12.	1668	95	22.8%	52	12.5%	1598	85	21.3%	46	11.6
	70 and over	1437	89	24.8%	49	13.	1548	93	24.0%	51	13.1%	1495	90	24.1%	49	13.
	20 and over	1845	115	24.9%	63	13 %	1850	110	23.8%	60	13.0%	1785	100	22.4%	55	12 %
Males and Females	2 and over	2178	139	25.5%	76	14.0%	2195	133	24.2%	73	13.3%	2157	124	23.0%	68	12.6%

¹NHANES = National Health and Nutrition Examination Survey; individual datasets available at http://ars.usda.gov/Services/docs.htm?docid=15044 (Reference 2)

²TC = Total Calories; TS = Total Sugars; TS ÷ TC = (Total sugars grams converted to calories and divided by total calories); TS ÷ TC = % of total calories attributable to total sugars

³Added Sugars = Total Sugars * 0.547 (Reference 10)

⁴TC = Total Calories; AS = Added Sugars; AS + TC = (Added sugars grams converted to calories and divided by total calories); AS + TC = % of total calories attributable to added sugars

.6%

Published, peer-reviewed evidence

Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. September 2002. Table J-4.

The Sugar Association, Inc.© November 2002

J Bone and Mineral Research (2009) 24(5

Report of the Dietary Guidelines Advisory Committee On the Dietary Guidelines for Americans, 2010

Figure B2.1. What we eat versus recommended limits: Calories from Solid Fats and Added Sugars (SoFAS)

 Significantly reduce intake of foods containing added sugars and solid fats ...

- Americans eat too many calories from foods high in solid fats and added sugars (SoFAS) that offer few or no other nutrients besides calories.
- Americans currently consume 35 percent of their total calories from SoFAS. This is too high. They should reduce intake of calories from SoFAS by 20 to 30 percent. This means that no more than 5 to 15 percent of total calories should be derived from SoFAS.

Dietary Guidelines for Americans 2010

U.S. Department of Agriculture U.S. Department of Health and Human Services www.dietaryguidelines.gov

BALANCING CALORIES TO MANAGE WEIGHT

- Prevent and/or reduce overweight and obesity through improved eating and physical activity behaviors.
- Control total calorie intake to manage body weight. For people who are overweight or obese, this will mean consuming fewer calories from foods and beverages.
- Increase physical activity and reduce time spent in sedentary behaviors.
- Maintain appropriate calorie balance during each stage of life—childhood, adolescence, adulthood, pregnancy and breastfeeding, and older age.

FOODS AND FOOD COMPONENTS TO REDUCE

- Reduce daily sodium intake to less than 2,300 milligrams (mg) and further reduce intake to 1,500 mg among persons who are 51 and older and those of any age who are African American or have hypertension, diabetes, or chronic kidney disease. The 1,500 mg recommendation applies to about half of the U.S. population, including children, and the majority of adults.
- Consume less than 10 percent of calories from saturated fatty acids by replacing them with monounsaturated and polyunsaturated fatty acids.
- · Consume less than 300 mg per day of dietary cholesterol.
- Keep trans fatty acid consumption as low as possible by limiting foods that contain synthetic sources of trans fats, such as partially hydrogenated oils, and by limiting other solid fats.
- Reduce the intake of calories from solid fats and added sugars.
- Limit the consumption of foods that contain refined grains, especially refined grain foods that contain solid fats, added sugars, and sodium.
- If alcohol is consumed, it should be consumed in moderation—up to one drink per day for women and two drinks per day for men—and only by adults of legal drinking age.⁵

5. See Chapter 3, Foods and Food Components to Reduce, for additional recommendations on alcohol consumption and specific population groups. There are many circumstances when people should not drink alcohol.

DIETARY GUIDELINES FOR AMERICANS, 2010

High – Intensity Sweeteners

SUGAR ASSOCIATION

BCalaric Condittes Saitioner

Artificial sweeteners trigger loss of ability to adjust to extra calories

Increased Medical Research

Artificial sweeteners elicit insulin response

PLOS One (2009) 4(4): e5106, 1 - 11

PLOS One (2009) 4(4): e5106, 1 - 11

Artificial sweeteners magnify glucose uptake

J Physiology (2007) 582(1): 379 - 392

Food intake increases when brain senses no calories tied to sweet taste of artificial sweeteners

Neuron (2008) 57(6): 930 - 941

Table 2 Incremental AUC data for plasma hormones, glucose and appetite scores measured between 0 and 120 minutes (unless specified) and energy and water intake at the buffet meal

	W	WS	S	MD
Insulin _(0–10 min) (pmol min/l)	171 ± 60	235 ± 83	70±25	68 ± 24
$GLP-1_{(0-10 \text{ min})}$ (pmol min/l)	882 ± 113	948 ± 171	922 ± 132	658 ± 78
Glucose (mmol min/l)	33.5 ± 6.9^{a}	51 ± 12.5^{b}	$25.3 \pm 20.4^{\circ}$	122.3 ± 17.5
Insulin (pmol min/l)	$287 \pm 331^{\circ}$	$-471 \pm 132^{\circ}$	$-459 \pm 352^{\circ}$	5669 ± 519
GLP-1 (pmol min/l)	-675 ± 1610	-248 ± 784	-359 ± 401	415 ± 610
PYY (pmol min/l)	-179 ± 119	-128 ± 119	-56 ± 192	283 ± 185
Hunger (mm min)	1724 ± 322	1641 ± 336	1993 ± 199	2017 ± 472
Desire to eat (mm min)	1376 ± 216	1128 ± 275	1330 ± 458	1441 ± 461
Prospective food consumption (mm min)	1318 ± 305	1623 ± 266	2002 + 247	10/0 + 441
Energy intake (kJ)	2355 ± 227	2417 ± 222	2597 ± 277	2460 ± 167
Water intake (ml)	267.0 ± 69.0	250.7 ± 45.1	291.0 ± 49.0	303.0 ± 49.0

European J Clinical Nutrition (2011) doi: 10.1038/ejcn.2010.291

Artificial sweeteners trigger loss of ability to adjust to extra calories

PLOS One (2009) 4(4): e5106, 1 - 11

Thank you

