Ion Exchange Decolorization Applications Using Fractal Shallow Bed Equipment

V. Kochergin, W. Jacob, S. Brandon, K. Vinecke, T. Pryor

Amalgamated Research LLC

Presented at the 38th Biennial ASSBT Meeting Clearwater Beach, FL February 26, 2015

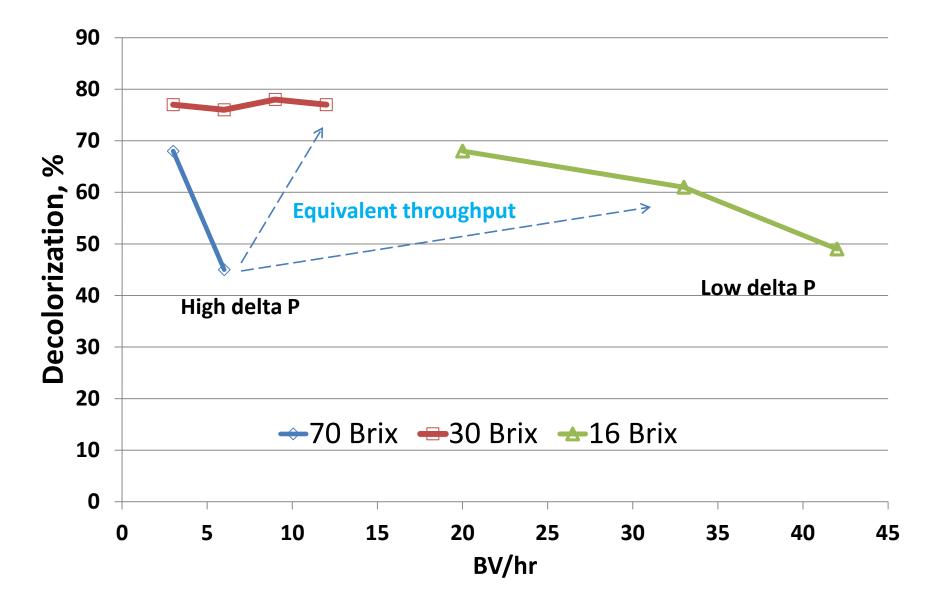
Applicability of Available Information And Challenges For Beet Sugar Applications

- Most information is about low color (less than a 1000 IU) cane syrups
- Resin bed depth 6-13 feet(flowrates, pressure drop issues)
- Irreversible fouling with high MW colorants(the composition is different for beet extract / thick juice)
- Amount of regenerant waste is proportional to color removal (high color syrups will generate larger amount of waste- needs to be addressed)
- Different pH, Brix, etc.

Old style equipment is expensive, new approaches required

Group Consortium Trials

- Amalgamated Sugar
- American Crystal
- Michigan Sugar
- Rogers Sugar


Pilot Equipment

Effect of Brix on Decolorization

(30 and 70 BX extract, 16 Bx Thin Juice - 3 ft resin bed)

Study Highlights

- Decolorization can be accomplished in realitvely short beds that minimizes the capital investment
- Decolorization on dilute juices is more efficient. Additionally, the overall resin loading is higher due to accessibility of resin active sites
- As a result, the amount of regenerant can be reduced. Regenerant use can be optimized by partial recycle and nanofiltration
- Regeneration can be accomplished at higher flowrates
- Fractal Shallow Bed equipment design allow to bring both capital and operating cost to a reasonable level

Escon / ARi Fractal Shallow Bed Softener Installation In a European Sugar Plant

Two Consecutive White Boilings in the Beet Sugar Industry

Underlying Concept -Reduce Negative Impact of Recycles

Reasons for Recycle

- Higher product recovery
- Improved quality of the product ,
- Minimized environmental impact through the reduction waste streams
- Improved heat recovery
- Etc.

Effect of Recycle on Sugar Inventory

Recycles Require Larger Equipment

Boilings

		White		High Raw		Low Raw
Parameter	Existing	Two White Products	Existing	Two White Products	Existing	Two White Products
M/Cuite Flow (cu. ft./hr)	2,286	1,672	1,089	785	462	473
% Sugar Recycle	42.1	18.3%				
Sugar Color (ICUMSA)	23	17	2855	34	7444	3817
	94.0	93.1	87.7	85.4	76.0	76.0
Pan Purity (%Sug/DS)					76.3	76.8
Molasses Purity (%Sug/DS)					59.1	59.4
Steam Flow (lb/hr)	50,305	52,843	20,786	10,145	6,789	5 <i>,</i> 869
Molasses Color (ICUMSA)					43,778	22,442

Estimated Percent Reduction

Total massecuite Flow	24
Percent of Sugar Recycle	57
Exhaust steam usage	12
Molasses color	49

						Color
I	Flowrate,	Bed	Cycle	Average Feed Color,	Color	Loading,
	BV/hr	length	length,	ICUMSA	Removal.	units/l
		Pţ.	min		%	resin
	20	2	360	1,370	61	15,820
	33	2	360	1,513	63	21,999
	42	2	420	1,733	49	35,514
	30	3	360	1,280	68	15,224
	36	3	300	1,302	63	18,186
					\smile	

Remaining Questions for Large Scale Trials

- Ash content and crystal size in the second boiling
- Variability of thin juice color during the crop
- New purity profile with two white products
- Utilization of continuous machines be used after the second boiling (crystal uniformity)
- Longer term resin studies (regenerations efficiency and sustainability, etc.)

Conclusions

 Decolorization with Fractal Shallow Bed Approach makes projects more attractive due to lower capital and operating cost

 Use of innovative technologies and approaches is required to support the new vision

Acknowledgements

- Robert Howe and his team- British Sugar plc
- Amalgamated Sugar LLC Nampa factory team