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ABSTRACT 


This paper is concerned with the appropriateness of simple linear regression models in which 
a response is predicted based on a linear functional relationship to a regressor variable. 
Assuming that a cause-and-effect relationship exists, and that prediction is the objective, the 
usual method is to assume that least squares estimation of the parameters is appropriate. It is 
also assumed that the measured response is subjected to variation, while the regressor variable 
is a fixed quantity, measured without error. More often than not, such assumptions are not 
appropriate and the simple linear regression becomes more complicated. This paper focuses on 
the assumptions requ~red for the usual least squares, fixed regressor variable case. Alternative 
means of constructing the simple linear regression model is outlined . An example involving beet 
quality determination is used for illustration. 

INTRODUCTION 

Early in the 1900's, correlation analysis was commonly used to characterize the relationship 
between two variables, x and y. The advantage of such a simple analysis was that it treated both 
variables on equal footing. Unfortunately, correlation analysis measures the strength of a linear 
relationship between the two variables. Ifx and y were related nonlinearly, correlation analysis 
would yield a low correlation and the researcher would look to other means for relating the two 
variables. While correlation analysis is still common today, researchers tend to focus on 
regression, or the prediction of y based on values of x. 

The reason for expressing y as a mathematical function of x depends on the objective of the 
study. Generally, th:-ee objectives are recognized: 

; 

(1) 	 a functional relationship exists based on theory - the purpose of regression is to obtain the 
estimates necessary to characterize this relationship; 

(2) 	 a functional relationship exists and parameter estimates are known - the purpose of 
regression would then be to validate the theory; 

(3) 	 no specific functional relationship can be deduced from theory - the purpose of regression 
would be to assist in determining possible relationships, or to provide an empirical 
characterization of the data. 

Objective (3) is the most common. It is particularly useful when direct measurement of y is not 
possible or feasible. The researcher strives to find a functional relationship that approximates 
reality. 

The simplest form of regression is the simple linear regression involving two variables, x and 
y. It may be that the researcher, through correlation analysis, determined an adequate linear 
relationship between ,the two variables. Furthermore, the researcher desires to predict y as a 
linear function of x. As simple as this sounds, several considerations must be made in 
performing such a regression. 
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The purpose of this paper is to detail the simple linear regression model and assu mptions 
necessary for application. When these assumptions are violated, the simple linear regression 
becomes more complicated and requires less contemporary methods for application. 

SIMPLE LINEAR REGRESSION MODEL 

The simple linear regression model (SLRM) is characterized by an equation of the following 
form, 

where .r; is the response of interest (commonly referred to as the dependent variable), (X is the 
parameter representing the Y-intercept, {J (referred to as the slope) is the parameter associated 
with Xi (referred to as the independent variable), and ej is the experimental error associated with 
Y;. 

The usual method is to collect data on Y for selected values of X , and obtain, via least 
squares, estimates for the parameters Ct and {J. Fitting a line by least squares is preferred over 
other methods since least squares estimation strives to minimize the sum of the squared 
prediction errors. That is, least squares allows us to choose estimates for ex and {3 that provides 
the least amount of uncertainty associated with the estimation of these parameters. Thus, the 
least squares estimates for ex and {3 are given by, 

ci = y - pi 

where X is the mean x value, y is the mean y value, Xi and Yi are the corresponding observations, 
and N is the number of (Xi' YJ pairs. If the goal is to predict Y based on selected values for X, 

the following equation is derived: 

The advantages in using least squares estimation are mathematical, including simplicity of 
the calculation , optimality of the estimates, and quantifying the uncertainty of predictions. If 
the data follow a gaussian distribution, the mathematical elegance of least squares is enhanced. 
However , disadvantages do exist and are principally concerned with the nature and IIpattern" of 
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the data. If the data exhibit unusual patterns (Le., non-normality) or include extreme values 
(outliers), least squares can be very misleading. If the regressor variable, x, is also measured 
with uncertainty, usual approaches must be modified. Gunter (1992a) discusses an example 
involving outliers and their effect on simple linear regression. Other examples are available as 
well (e.g., Mandel, 1964; Draper and Smith, 1981). 

Statisticians have a well-defined arsenal of diagnostic procedures for assessing the 
applicability of the simple linear regression model (e.g., normality plots, outlier tests). In many 
cases, however, researchers fail to indicate what diagnostic procedures, if any, were used to 
validate the use of the simple linear regression model. In fact, the availability of "canned" 
software tends to lull the researcher into a false sense of security when developing parameter 
estimates. Most popular software fails to outline the advantages and disadvantages of applying 
regression techniques. Unless a statistician or appropriately trained personnel are consulted, the 
adoption of these equations may prove erroneous. 

SIMPLE LINEAR REGRESSION: IF NOT LEAST SQUARES, WHAT? 

The most important criterion for wanting to fit a straight line to data is the underlying 
system. Is the line supported by theory? Linear regression is a tool, not a replacement for 
underlying processes. Assuming that simple linear regression is deemed theoretically sufficient, 
diagnostic tools are available for assessing the utility of the line. 

One of the easiest diagnostic tools available for assessing the estimated regression line is the 
residual plot. Recall from above that the experimental error or residual, ej , is the actual data 
value, Yi, minus the predicted value, Yj, based on the observed Xi'S. A plot of these residuals 
against the predicted values should provide a graph portraying a structureless pattern or "noise". 
Additionally, residuals could be assessed for conformance to the gaussian (normal) distribution 
or formally tested (Draper and Smith, 1981). Extreme points would be recognizable and if 
warranted, omitted, with new estimates and refitting of the line performed. A cautionary note: 
extreme values are NOT necessarily wrong. If there is justification for omitting these points, 
then do it. If justification is not available or warranted, the extreme data may be important! 

Popular software, while having the ability to perform calculations, often lacks diagnostic 
capabilities. As far as the software is concerned, the data are well-behaved. One disadvantage 
of least squares is that it assigns an equal weight to all data points, even those points deemed 
extreme. If extreme values are determined to be suspect, weighted least squares can be 
performed by assigning full weights to those data that are "OK" and lesser weights to suspect 
data (Gunter, 1992b). Unfortunately, this process is an iterative one (successive computing of 
estimates) and is not available in most non-technical software. 

Another least squares disadvantage is that the procedure is based on averages. Extreme 
values have the effect of distorting the average. In normal data analyses, this would lead to the 
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use of the median in place of the mean. Simple regression is no different in that instead of 
minimizing the mean of the squared residuals, we minimize the median of the squared residuals. 
This technique is computationally demanding and can often provide erroneous results. 

A final problem that can occur concerns the assumption of a fixed regressor variable. If x 
is fixed (i.e., measured without error), and all the data are well-behaved, least squares 
estimation is inarguably the best method. In far too many cases, x is not measured without 
error. When this is the case, lines obtained by the usual methods can be very misleading. In 
fact, instead of a single regression line, Y on X, there exists another line, X on Y, which is the 
basis for calibration. The reason is that not only is there uncertainty of the estimates caused by 
the unknown components of experimental error, 8 j , but now uncertainty arises from the unknown 
error associated with the determination of X. I will not discuss the technical problems associated 
with this problem but interested readers will find a great deal of information on this topic (e.g., 
Bartlett, 1949; Sampson, 1974; Fuller, 1987; Draper, 1991). 

To illustrate some of the ideas presented in this paper, a practical set of data will be 
investigated. 

APPLICATION 

The data in Table 1 were used by Carruthers and Oldfield (1962) to illustrate the relationship 
between select raw juice impurities (g/IOO S) and second carbonation purity. This relationship 
forms the basis for the so-called 'Carruthers Equation' and has been used extensively throughout 
the beet sugar industry. 

They found a mocel 

Purity == 100.9 - 0.00143 impurity value 

which was deemed appropriate over a wide range of conditions. The impurity value is 
calculated via the following equation: 

impurity value = 2.5 K + + 3.5 Na+ + 10 Amino - N + betaine 

Fitting this model to the data of Table 1 yields the following information: 

Coefficients Estimate std. Error P-value 

I nter cept 
i mpurity value 

100.8971 
-0.0014 

1. 0032 
0 . 0002 

0.0001 
0.0001 

R2 = 0 .82 8 2 
= 0.18 
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Table 1. Data from Carruthers and Oldfield (19 61 ) comparison of 
second carbonation purities and i mpurity va lue. 

Factory and Second carb Impurity value 
y e a r pur i t y (mg/ 100 S ) 

1958/59 Campaign 

Cantley 
Colwick 
Brigg 
Poppleton 
Kelham 
Kiddermi ns ter 
Spalding 
Bardney 

1959/60 Campaign 

Poppleton 
Selby 
Colwick 
Bury 
Brigg 
Ipswich 
Spalding 
Kidderminster 
Felsted 
Wissington 
Kelham 
Cantley 
Bardney 

Mean 
Variance 

93.3 
92.7 
92.7 
92.4 
92.3 
91.8 
90 . 7 
90. 7 

92 .4 
92.2 
91.8 
91.8 
91.7 
91.1 
91. 0 
91. 0 
90.7 
90.5 
90.4 
90.3 
89.4 

91.5 
1.0 

5370 
5660 
5690 
6300 
5970 
6730 
7570 
7340 

6320 
6320 
6270 
6420 
6470 
7010 
6620 
7300 
6720 
6800 
7240 
6940 
7720 

6609 
401143 

The results match those of Carruthers and Oldfield. Although not reported in the original 
paper, regressing purity on impurity value accounted for 82 % of the variation in the data. Both 
parameter estimates were significantly different from 0 (p < .01 in both cases). 

With slight modification, this equation is the currently adopted form used in estimating sugar 
loss to molasses and second carbonation purity. The modifications usually include removal of 
betaine from the equation and using a 9.5 multiplier for amino-N instead of 10. For details on 
the methodology, see Carruthers and Oldfield (1962) or Carruthers, Oldfield, and Teague 
(1962). 

4 3 



The first step in assessing the aptness of the adopted model was to construct a histogram of 
the actual data and residuals. Although not presented here, both histograms indicate well
behaved data. A test for normality did not indicate any problems. The next step was to obtain 
plots of the residuals versus predicted and impurity value data. Typically, such plots, assuming 
a correct model, will reveal a random scattering of points. Figures 1 and 2 provide these plots. 
Both figures indicate that the variance is not constant, as assumed by the model employed. 
Figure 1 shows that residuals increase with increasing predicted values, while in Figure 2, 
decreasing residuals are associated with increasing impurity values. Such "funneling" effects 
give evidence for unequal variation (i.e., heteroscedasticity). The usual method to correct this 
variance fluctuation is to use weighted least squares. An alternative is to transform the purity 
values to make the variance more stable. 

If the information provided by the plots above had indicated no abnormalities in the data, the 
equation as developed , would be optimal. The fact that there are some discrepancies indicates 
that the least squares estimates above are misleading. The fluctuation in variance noted earlier 
can be traced to the raw data presented in Table 1. Note that the data were taken from two 
campaigns. Separating the means and variances for each year yields, 

Me a n Var i ance 

Va r iable 1958/59 195 9/6 0 1958/59 1 959 / 60 

purity 92. 1 91.1 0.9 0.7 
I mpurity Va l ue 6329 6781 661184 198558 

The purity means and variances are similar for both years , but the impurity values differ, 
particularly the variances. This implies that the impurity observations arose from different 
populations and hence, have different variances. Even more critical, the assumption of no 
measurement error in X appears to be unjustified since a great deal of uncertainty is associated 
with the determination of the impurity value. This uncertainty is a total of all the variability 
surrounding the determination of each component used to calculate the impurity value. In light 
of this information, the simple linear regression model is not appropriate for this data. 

In order to complete our discussion, an alternative is presented that would allow us to use 
impurity value to predict purity. For this example, it is assumed, perhaps incorrectly, that the 
measurement error associated with X is negligible. Given that the data arise from different 
sources, we can employ a regression model, using campaign year as a dummy variable (Draper, 
1981). First, fi tting a SLRM to both sets of data gives, 
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Figure 1 . Plot of SLRM residuals 
versus predicted purity. 
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Figure 2. Plot of SLRM residuals versus 
i~purity value (g/lOOS). 
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Year/Parameter Est i mate standar d Error Probe 

1958/59 

intercept 99. 3076 0.605 3 .0001 

impur ity value - 0.0011 0 . 0 0 01 . 0 001 


R2 S2= 0.96 = 0.04 

1 9 5 9 /60 

i ntercept .102 .4 008 1 .9603 .0001 

i mp urity value -0.0017 0.0003 .0001 


R2 = 0. 75 S2 = 0.20 

It is evident that a SLRM provides an excellent fit to the data from the 1958/59 campaign year, 
while providing a poorer fit to the 1959/60 campaign data. Thus, it appears that splitting out 
the data was justified. In deriving a "dummy" variable model, we designate a new variable, Z, 
which takes on a value of 1 if the data are from 1958/59, and 0 for the 1959/60 campaign data. 
Performing this task, the "dummy" variable SLRM becomes, 

y = 100.06 - 0.001 X + 0.38 Z 

This equation yielded a R2 = 0.86 and S2 = 0.16. Thus, we have increased the amount of 
variation accounted for by the model, while improving upon the original precision. 

This simple example is by no means the final word. More analyses and data are required 
in order to develop a robust equation that is suitable for all years and locations. Some ideas for 
future work include assessing each component of the impurity value in a multiple regression 
situation, and assessing the amount of measurement error present in impurity determination. 
True replication of impurity values would greatly facilitate the development of a robust equation. 
More complicated mathematical models may be offered that provide adequate representation of 
the theory. Again, all models should be evaluated using diagnostic measures. 

CONCLUSION 

The fitting of a SLRM, on the surface, appears to be simple. However, many assumptions 
are required that are often not justified. In particular, measurement errors associated with the 
independent variable, heteroscedasticity, non-normal error structures, and extreme values can 
all yield misleading estimates of the parameters in that the usual least squares methods are not 
valid. It should be the goal of every researcher wishing to develop predictive equations to 
employ the many diagnostic measures available for testing model adequacy. Failure to do so 
can often lead to inappropriate and unpredictable results. 
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SUMMARY 


When linear regression methods are used to predict a response, Y, from some independent 
variable, X, consideration as to the nature of the variables must be given. Usual least squares 
estimation is simple and appropriate when data exhibit no abnormalities. Extreme data can 
influence these estimates and be misleading. Heteroscedasticity can also lead to inconsistent 
estimates of the parameters. Failure of the data or residuals to conform to assumptions can also 
cause difficulties. Weighted least squares and "dummy" variable models can often alleviate such 
difficulties. 

In using simple linear regression methods, usual practice is to regard the X's as fixed 
quantities not subject to error. Under certain conditions (i.e., the range in X is large compared 
to the variance), this assumption is not detrimental to the analysis. If the X' s are measured with 
error, and this error is large relative to the range observed, then the usual simple linear 
regression model yields parameters that are misleading, and hence, inappropriate. Many 
methods exist for anzlyzing such data. A particularly useful class of techniques, measurement 
error models, allows estimation of parameters when X is subjected to error. These models are 
also useful in calibration models, where prediction of X is desired. 

Methods outlined in this paper were applied to a set of data used in developing the so-called 
"Carruthers Equation" . Results using the simple linear regression model indicated that the 
assumption of constant variance was not justified. Furthermore, X was measured with error. 
The lack of constant variance was attributed to the data arising from two different campaigns. 
A "dummy" variable model was suggested. The resulting estimates were more precise than with 
the SLRM. More of the variation was accounted for by the 'dummy' variable model. 
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