Development of Alternative Control Strategies for the Sugarbeet Root Maggot

ni equito tevito lacito trada vilancicacio Larry G. Campbell Stevil Loy off the reculated

USDA, Agricultural Research Service, Northern Crop Science Lab., Fargo, ND 58105-5677.

Sugarbeet root maggot (*Tetanops myopaeformis* von Röder) is a major insect pest of sugarbeet (*Beta vulgaris* L.) throughout much of North America (Campbell et al., 1998). The primary control method has been the use of insecticides to reduce larval populations in sugarbeet fields. The almost exclusive use of two organophosphate insecticides (chlorpyrifos and terbufos) is conducive to the development of insecticide resistant root maggot. Possible alternatives to these insecticides include the use of biological control agents and the development of germplasm with host plant resistance.

Two resistant germplasm lines, F1015 and F1016, have been developed and released by ARS and North Dakota State University (Campbell et al.,2000a). Four experimental hybrids were produced by Bill Niehaus of American Crystal Sugar using elite parental lines as the female parent and F1015 as the pollen parent. In 1998-99 trials with and without chlorpyrifos (Lorsban), the four experimental hybrids without insecticide produced between 133 and 584 pounds recoverable sugar per acre less than the same hybrids with chlorpyrifos applied at planting (Table 1). In contrast, not applying chlorpyrifos to a widely grown commercial hybrid reduced recoverable sugar yield by 1096 pounds per acre.

Among the biological control agents that we have evaluated for root maggot control, the entomopathogenic fungus *Metarhizium anisopliae* (Metschnikoff) Sorokin appears to be the most promising (Campbell et al., 2000b). Under moderate to light root maggot infestations (1995-1999), the highest yielding *Metarhizium* treatment produced 24.8 tons per acre, compared with 24.9 tons per acre from the chlorpyrifos treatment and 22.7 tons when no insecticide was used. Current research with *Metarhizium* focuses on the development of commercially useful application techniques and evaluations in diverse environments.

Imidacloprid applied as a seed treatment has provided some control of the root maggot under light infestation levels, but provided minimal control under the heavy maggot pressure encountered in 2000. Other research has suggested a synergistic effect when imidacloprid and *Metarhizium* were used together. This, and other combinations of insecticides, biological control agents, and host plant resistance, will be explored in future research.

a terretifier of the product has achorized to ease an estimation error (12) of 2.1 become estimate with the terretion broken and the terretion of the second terretion of the context and the second of the terretion of the terretion and the terretion of the terretion of the terretion of the second of the terretion of terretion of the terretion of the terretion of the terretion of terretion of the terretion of ter

Campbell, L. G., A. W. Anderson, and R. J. Dregseth. 2000a. Registration of F1015 and F1016 sugarbeet germplasms with resistance to the sugarbeet root maggot. Crop Sci. 40: 867-868.

Campbell, L. G., A. W. Anderson, and R. Dregseth, and L. J. Smith. 1998. Association between sugarbeet root yield and sugarbeet root maggot (Diptera: Otitdae) damage. J. Econ. Entomo. 91: 522-527. Campbell, L. G., J. D. Eide, L. J. Smith, and G. A. Smith. 2000b. Control of the sugarbeet root maggot with the fungus *Metarhizium anisopliae*. J. Am. Soc. Sugar Beet Technol. 37(1): 57-69.

Pert secretic genese true cores (RN/VV), the cause of Rhoremania, pretrike g root and sometimes foliar symptoms, and results in considerable sugarand yorld reductions. This virus was introduced from Europe and has since

Table 1. Yield of four experimental sugarbeet hybrids with F1015 as a pollinator, a commercial hybrid, and F1015, St. Thomas, North Dakota, 1998 and 1999.

Hybrid or line/ insecticide	Root yield 1998 1999 Mean	Sugar 1998 1999 Mean	Recoverable sugar
			1998 1999 Mean
arvast 10 Abutt au	- Tons / acre-	%	lb/acre
Exp - A			A CONTRACTOR OF A
Lorsban	20.4 22.2 21.3	14.4 15.1 14.8	5074 5835 5455
None -	19.6 19.7 19.7	14.5 14.3 14.4	4837 4868 487
Mean	20.0 21.0 20.5	14.5 14.7 14.6	4974 5351 5165
Exp - B			test fields in the
Lorsban	17.5 19.7 18.6	14.2 14.2 14.2	4267 4807 4537
None	17.8 20.1 18.9	13.9 13.5 13.7	4186 4631 4409
Mean	17.6 19.9 18.8	14.1 13.8 14.0	4227 4719 4473
Exp - C	de terre alditurenter	internet of the second of the second	
Lorsban	14.9 17.6 16.3	15.0 14.5 14.7	3815 4428 4122
None	14.9 18.2 16.5	14.9 13.7 14.2	3809 4169 398
Mean .	14.9 17.9 16.4	14.9 14.1 14.5	3812 4298 4050
Exp - D		denomabilitation .	to anoral machine
Lorsban	18.3 19.9 19.1	14.7 14.5 14.6	4686 5044 4865
None	16.9 20.4 18.7	14.8 14.3 14.5	4379 5085 473
Mean	17.6 20.2 18.9	14.7 14.4 14.6	4532 5065 4790
F1015		ad infections with 83	suppressed in mix
Lorsban	16.4 19.0 17.7	13.5 13.6 13.6	3706 4433 4069
None	15.2 19.2 17.2	13.4 13.2 13.3	3395 4297 384
Mean	15.8 19.1 17.4	13.5 13.4 13.4	3550 4356 395
Commercial Hybrid	o misurdates are are the	a manufacture consideration	VUVDE an House
Lorsban	19.6 21.8 20.7	15.9 16.2 16.1	5601 6297 594
None	16.2 18.4 17.3	15.5 16.2 15.8	4398 5308 4853
Mean	17.9 20.1 19.0	15.7 16.2 16.0	5000 5802 540
Mean			
Lorsban	17.8 20.1 19.0	14.6 14.7 14.7	4525 5140 483
None	16.8 19.3 18.0	14.5 14.2 14.3	4173 4726 445
Mean	17.3 19.7 18.5	14.6 14.4 14.5	4350 4933 464

149

8 ×