'Variation in the p25 region of resistance breaking *Beet necrotic yellow vein virus* from infected plants in Minnesota'

Madeleine Smith*, Charlie Rush

Texas AgriLife Research, Amarillo

 Tolerance to BNYVV conferred by the Rz1 loci (inherited as a single dominant gene)

 Rz1 has been widely deployed in resistant cultivars from the mid 1980s onwards

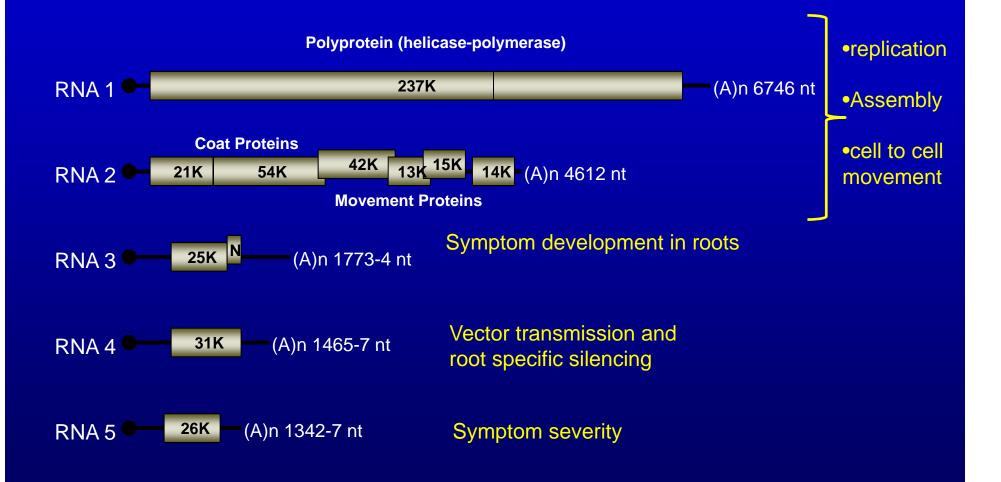
 In 2002-2003 BNYVV tolerant cultivars showed severe rhizomania symptoms in Minnesota

Symptoms of BNYVV

Lateral root proliferation and tap root constriction

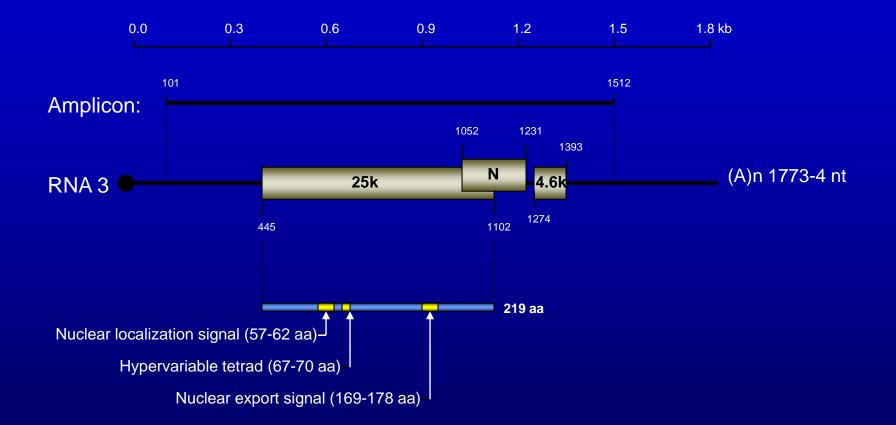
Healthy

Diseased


BNYVV Symptoms - field

- How and why is BNYVV able to overcome this resistance?
- Is there an underlying reason for the epidemiological differences seen in field distribution?

Beet necrotic yellow vein virus (BNYVV)



Amino Acid Motifs In the p25 of BNYVV

•Reverse genetics approach by Koenig *et al.* (1991) showed this region is important for pathogenicity of BNYVV

 In addition p67 and p68 in the p25 protein of BNYVV are correlated with resistance breaking (Tamada *et al.* 2011, Koenig *et al.* 2009)

BNYVV RNA 3

Methodology

Sampled roots from symptomatic and asymptomatic plants

Blinkers and spots

Amplify and sequence the p25 region of BNYVV

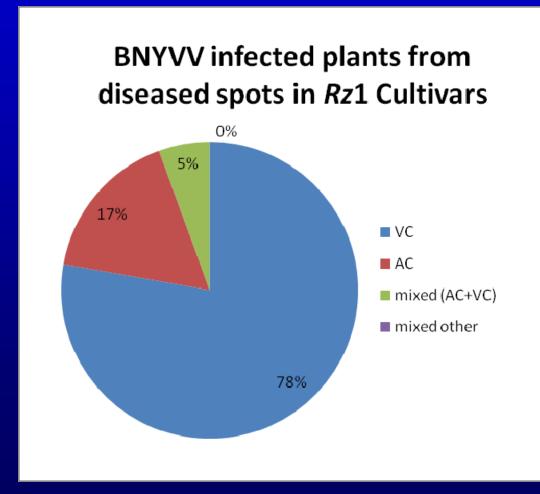
Methodology

- Important to sample plants rather than soil
- Important to sample symptomatic and asymptomatic plants
- Test for the presence of the *Rz* gene

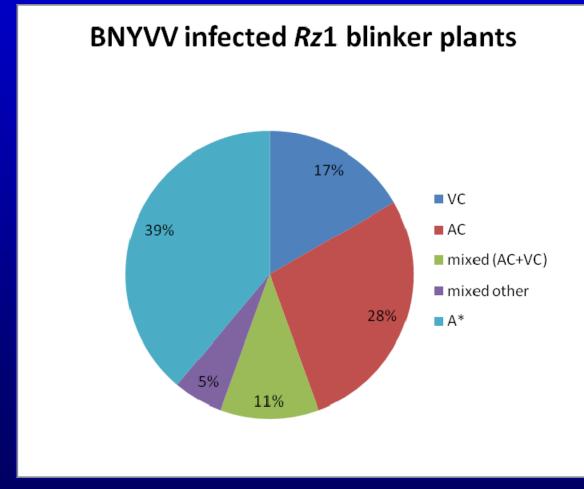
Consensus sequencing

Isolate	A. A. Motif p67	A. A. Motif p68
Minnesota WT	A	С
Minnesota RB	V	С
California WT	А	С
California RB	V	L

R. Acosta –Leal and Rush 2007


Amino Acids at p 67 and 68 in symptomatic plants from Minnesota spots

Plant Cond.	Location	R loci	p67	p68
yellow	spot	Rz1	V	С
yellow	spot	Rz1	А	С
yellow	spot	Rz1	V	С
yellow	spot	Rz1	А	С
yellow	spot	Rz1	V	С
yellow	spot	Rz1	V & A	С
yellow	spot	Rz1	V	С
yellow	spot	Rz1	V	С
yellow	spot	Rz1	V	С
yellow	spot	Rz1	V	С
yellow	spot	Rz1	V	С
yellow	spot	Rz1	V	С
yellow	spot	Rz1	V	С
yellow	spot	Rz1	V	С
yellow	spot	Rz1	А	С
yellow	spot	Rz1	V	С
yellow	spot	Rz1	V	С
yellow	spot	Rz1	V	С


Amino Acids at p 67 and 68 in symptomatic plants from Minnesota Blinkers

Plant Cond.	type	R loci	p67	p68
yellow	Blinker	Rz1	А	С
yellow	Blinker	Rz1	А	C &H
yellow	Blinker	Rz1	А	H
yellow	Blinker	Rz1	А	H
yellow	Blinker	Rz1	А	H
yellow	Blinker	Rz1	А	С
yellow	Blinker	Rz1	А	H
yellow	Blinker	Rz1	А	H
yellow	Blinker	Rz1	А	H
yellow	Blinker	Rz1	А	С
yellow	Blinker	Rz1	А	С
yellow	Blinker	Rz1	А	С
yellow	Blinker	Rz1	A &V	С
yellow	Blinker	Rz1	А	F
yellow	Blinker	Rz1	А	F
yellow	Blinker	Rz1	V	С
yellow	Blinker	Rz1	V	С
yellow	Blinker	Rz1	V	С

Amino acid motifs in Rz1 Cultivars in Minnesota

Amino acid motifs in Rz1 Cultivars in Minnesota

Conclusions

 Predominant motif in Rz1 diseased spots is V₆₇C₆₈

 This is not the case in Rz1 blinker plants where there is much more variation in the haplotypes present

Hypothesis

- Fitness of viral haplotypes
- In time, blinkers will initiate spots of disease in the field as the V₆₇C₆₈ haplotype becomes fixed in the population
- The V₆₇C₆₈ haplotype 'wins' out as the fittest viral strain overcoming Rz1 resistance
- Not all haplotypes are equally fit and therefore do not initiate diseased patches

Final thoughts!

Final Thoughts

 Other mutations present in other parts of the genome? (Tamada *et al.* 2011)

 Influence of minor effect QTL loci in different cultivars on R phenotype

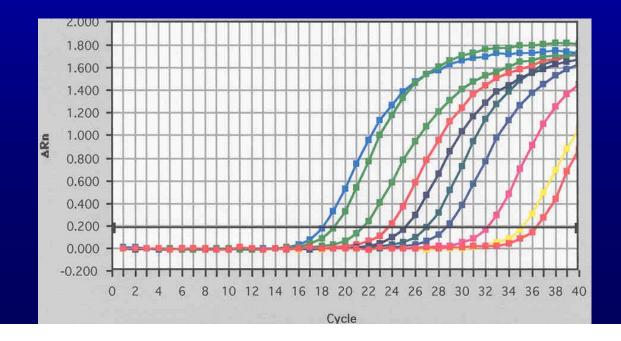
Is this pattern true of cultivars containing other R sources?

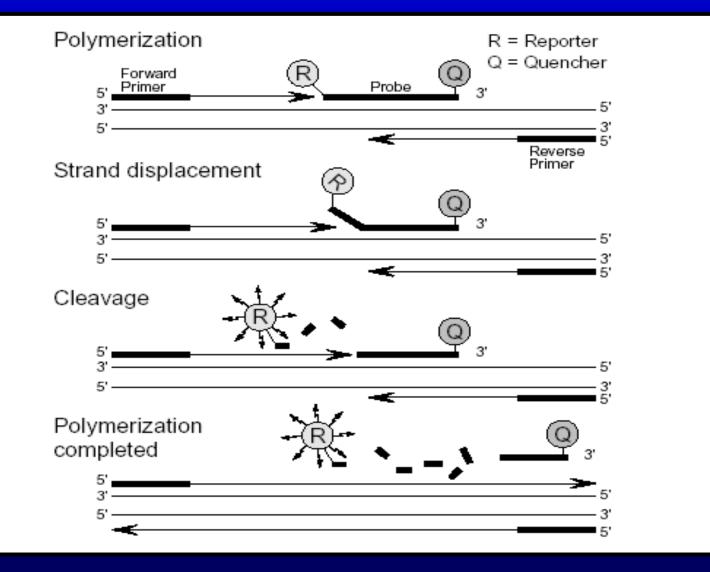
'Industry cooperation is key'!

Acknowledgements

Thanks to American Crystal, Southern Minnesota and Western Sugar Agricultural Staff for help in our field studies.

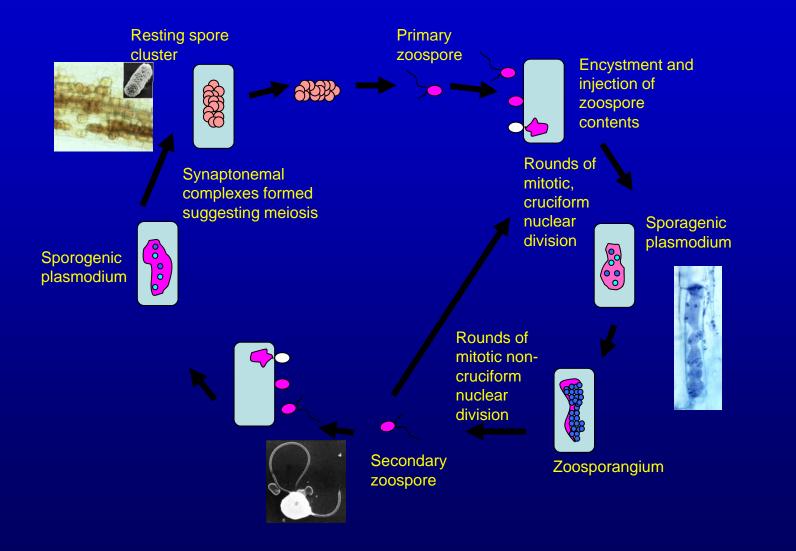
> Rush Lab: Rodolfo Acosta-Leal Jacob Price Becky Bryan Jewel Arthur

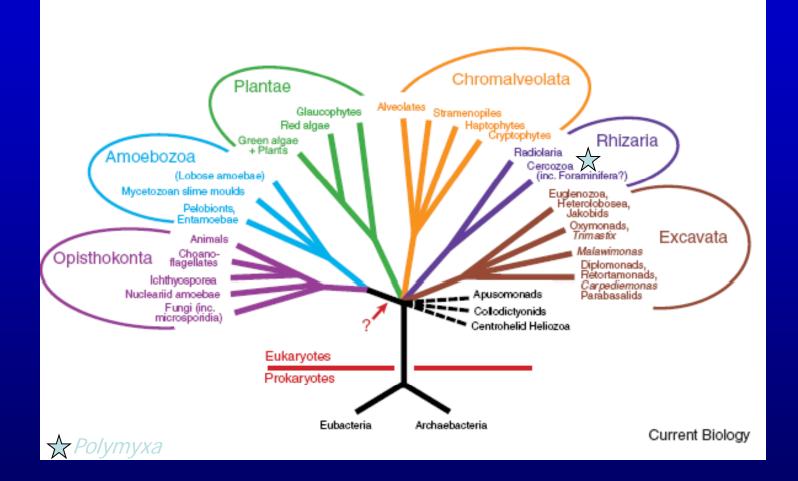

We appreciate the financial support of the Minnesota/North Dakota Research and Education board and the BSDF which has made this work possible


Thank you for listening!

Real-time PCR

- PCR products are detected as they accumulate
 - •DNA binding dyes e.g. SYBR green or specific fluorescent probes
- Amount of DNA amplified is measured after each cycle
- Initial amount of target can be related to cycle threshold (Ct)
- Target DNA quantified using calibration curve relating Ct to known template amounts


Real-time PCR


What is Polymyxa?

- Obligate intracellular root-infecting organism
- Polymyxa is one of 10 genera in the Plasmodiophoraceae
- Two Species: *Polymyxa graminis Polymyxa betae*

The Life Cycle of Polymyxa

The Tree of Life

Adl, S.M. et al. (2005) J. Eukaryot. Microbiol. 52:399-451 Simpson AG, Roger AJ (2004) Curr. Biol. 14:R693-696.