Groundwater Discharge Impacts

ASSBT General Meeting March 2011

Steven Smock Environmental Manager Michigan Sugar Company

Land Application and Groundwater **Discharges of Wastewaters** Past limits for Groundwater Discharge Good question – none established for a long time. Past criteria for compliance and successful operation for land application.* No pooling or ponding No runoff No odors

*Batt, D., Land Application of Food Processing Wastewater Challenges and Opportunities, Oct 2010, MFPC

Regulation framework

Much discussion for years.
EPA has yet to establish limits or guidelines
States are developing their own rules.

Recent History (Michigan)

Discolored odiferous water with an undesirable taste reported in some private drinking water wells.
 Found to contain several metals including Arsenic

Michigan History (continued)

- Hydrogeological studies showed the groundwater flow was from the land application sites of nearby food processors.
 None of the metals of concern were in the
 - wastewater
- DEQ press releases ⇒ bad PR
 Research conducted

Research – Why & How

Land application one of the oldest type of wastewater treatment

- No studies found into impacts, proper methods, etc.
- MSU & MTU started researching (still in progress)
 - Early results are in

Research Findings

In anoxic or anaerobic soils several metals become soluble in water. - Why?

- In the absence of oxygen some bacteria will find alternative electron acceptors.
 - Nitrate
 - Manganese
 - Iron
 - Sulfate

Solutions Prevent Anoxic / Anaerobic conditions Avoid high organic loads Avoid high hydraulic loads Some mixture of high hydraulic and organic loading.

Maximize soil treatment

Generally keep BOD < 50 lb/acre/day</p> Minimize hydraulic loading Avoid soil compaction Allow soil to breath (dry) Remove material (harvest crops) Cold weather can increase challenges Subsurface injection. Snow manufacture

Conditions at the site will have impacts

Upstream groundwater quality
Depth to groundwater
Soil type

Alternative

Air Sparging

- Injecting air (oxygen) into the groundwater.
- Has been used for years for remediation.
- Injection wells across the width of plume & / or application site.
- Spacing of injection points is dependent on:
 - soil type
 - loading
 - Depth to groundwater
 - Amount of air (oxygen) needed

Air Sparging

Can be used to increase the loading to the site.
Can be used to fix a metal solubility issue rather quickly.

Sampling rates

- Use logic to determine an appropriate rate.
- Sampling prior to application easy and low cost.
- Of groundwater, the sampling is more labor intensive.
- Groundwater travels slowly.

Groundwater travel speed Example sites

Superfund site in Michigan

- Approximately 90 feet of foundry grade sand.
- Groundwater travels 1,900 feet in 17 years
- 112 feet per year = ~4 inches/day

Sugar Beet factory

- Hydraulic Conductivity ~1.0 X 10⁻⁵ cm/s
- Time of travel = 0.3 in/day

Best Parameters to monitor Groundwater impacts Dissolved Oxygen ORP (oxygen reduction potential) Inorganic Nitrogen (types) Dissolved Manganese Dissolved Iron Sulfate / Sulfide

