Nitrogen Management in U.S. Sugar Beet Production

David Tarkalson and Dave Bjorneberg
USDA-Agricultural Research Service
Northwest Irrigation and Soils Research Laboratory
Kimberly Idaho

4R Nutrient Stewardship

Goal:

- Optimize crop yields
- Maximize producer profits
- Maximize N use efficiency
- Minimize NO₃ leaching, N
 gas losses

Research and Management Collaboration

- Improved in N use efficiencies
- Improved in N rate recommendations
- An important knowledge gap:
 Mineralization
- Further refinement of N rate recommendations

Yield vs N Rate – American Crystal Area

- N Rate Study with various rates including a 0 N fertilizer check.
- 23 site years
- 1984-1987
- North Dakota
- Spring Soil NO3-N, 0-2
- Maximum Sugar Yield (statistically)
 - If no difference in yield, site labeled as non-responsive
- Determined the recommended N needed from published 1976 and 1988 recommendations (Univ. MN and NDSU).
- N Recommended N that yielded the greatest sugar yield
- (+) amount of excess N from fertilizer
- (-) amount of N deficient to meet need.

Used 0-2 ft soil NO3-N

Site

- N Rate Study with various rates including a 0 N fertilizer check.
- Dave Elison, Greg Dean, Paul Foote, Stacey Camp, David Tarkalson.
- 24 site years (year, site, variety).
- 2005-2010.
- Replicated 4 to 8 times.
- Spring Soil N, 0-3ft .
- Located across the sugarbeet growing area.
- Various soil types, sand clay loam.

- Compared <u>available N to achieve maximum</u> <u>sugar yield</u> with <u>N requirements</u> of 4 lbs N/ton, 5 lbs N/ton, 6 lbs N/ton, 7 lbs N/ton and 8 lbs N/ton (Uofl rec).
- Determined the maximum sugar yield (statistically).
 - Maximum sugar yield was obtained at a rate <u>greater</u>
 than the check on 8 of the sites, <u>responsive sites</u>.
 - 16 of the sites were non-responsive. Maximum yield was assigned to the check yield.

Idaho - 24 Site Years 2005-10

Study Root Yield/Available Soil N (lbs N/ton, Nr)

Idaho – 24 Site Years 2005-10

Effect of Past Manure on N Mineralization

- N use efficiencies have improved
- N rate recommendations have improved
- We need to better understand the process of mineralization in our systems
- Research data supports growers in Idaho reducing Nr to around 6 lbs/ton

