A contiguous de novo genome assembly of sugar beet EL10 (Beta vulgaris L.)

J Mitchell McGrath¹, Andrew Funk², Paul Galewski², Shujun Ou², Belinda Townsend³, Karen Davenport⁴, Hajnalka Daligault⁴, Shannon Johnson⁴, Joyce Lee⁵, Alex Hastie⁵, Aude Darracq⁶, Glenda Willems⁶, Steve Barnes⁶, Ivan Liachko⁷, Shawn Sullivan⁷, Sergey Koren⁸, Adam Phillippy⁸, Jie Wang⁹, Tiffany Liu⁹, Jane Pulman⁹, Kevin Childs⁹, Shengqiang Shu¹⁰, Anastasia Yocum¹¹, Damian Fermin¹¹, Effie Mutasa-Göttgens¹², Piergiorgio Stevanato¹³, Kazunori Taguchi¹⁴, Rachel Naegele¹, Kevin Dorn¹⁵. ¹USDA-ARS, 1066 Bogue St., Michigan State Univ., East Lansing, MI USA. ²Plant Breeding, Genetics, and Biotechnology Program, Michigan State Univ., East Lansing, MI USA. ³Department of Plant Sciences, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK. ⁴BioNano Genomics, 9640 Towne Centre Drive, San Diego, CA USA. ⁵Los Alamos Nat'l Lab, Biosecurity and Public Health, Los Alamos, NM USA.

⁶SESVANDERHAVE N.V., Industriepark Soldatenplein Zone 2 Nr 15, 3300 Tienen, Belgium. ⁷Phase Genomics, 4000 Mason Road, Suite 225, Seattle, WA USA. ⁸Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA. ⁹Center for Genomics-Enabled Plant Science, Plant Biology Department, Michigan State. Univ., East Lansing, MI USA. ¹⁰United States Department of Energy, Joint Genome Institute, Berkeley CA USA.

¹¹A2IDEA, 674 S. Wagner Rd., Ann Arbor, MI USA. ¹²University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB UK. ¹³DAFNAE, University of Padova, Viale Università 16, 35020 Legnaro (PD), Italy. ¹⁴Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Shinsei Memuro, Hokkaido, 082-0081 Japan. ¹⁵USDA-ARS, 1701 Centre Ave, Crops Research Laboratory, Fort Collins, CO USA.

Corresponding Author(s): J. Mitchell McGrath (<u>mitchmcg@msu.edu</u>) and Kevin Dorn (<u>kevin.dorn@usda.gov</u>) DOI: https://doi.org/10.1093/dnares/dsac033

ABSTRACT

A contiguous assembly of the inbred 'EL10' sugar beet (*Beta vulgaris* ssp. *vulgaris*) genome was constructed using PacBio long read sequencing, BioNano optical mapping, Hi-C scaffolding, and Illumina short read error correction. The EL10.1 assembly was 540 Mb, of which 96.7% was contained in nine chromosome-sized pseudomolecules with lengths from 52 to 65 Mb, and 31 contigs with a median size of 282 kb that remained unassembled. Gene annotation incorporating RNAseq data and curated sequences via the MAKER annotation pipeline generated 24,255 gene models. Results indicated that the EL10.1 genome assembly is a contiguous genome assembly highly congruent with the published sugar beet reference genome. Gross duplicate gene analyses of EL10.1 revealed little large-scale intra-genome duplication. Reduced gene copy number for well-annotated gene families relative to other core eudicots was observed, especially for transcription factors. Variation in genome size in *B. vulgaris* was investigated by flow cytometry among 50 individuals producing estimates from 633 to 875 Mb/1C. Read depth mapping with short-read whole genome sequences from other sugar beet germplasm suggested that relatively few regions of the sugar beet genome appeared associated with high-copy number variation.

RE-PRINT

This work is written by (a) US Government employee(s) and is in the public domain in the US. Author: J. Mitchell McGrath et al. Publication: DNA Research Publisher: Oxford University Press Date: 2022-10-08 Copyright © 2022 Link: <u>https://academic.oup.com/dnaresearch/advance-article/doi/10.1093/dnares/dsac033/6748264</u>