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ABSTRACT
Nitrogen (N) management is the most 
important fertility consideration in 
sugarbeet (Beta vulgaris) production 
as it affects not only yield but also 
sugar quality. Increased N in sugar-
beets can result in increased impuri-
ties which reduces sugar extraction 
efficiency. As industry yields con-
tinue to increase over time, the es-
tablished method for determining N 
requirement in sugarbeets results in 
greater and greater fertilizer N ap-
plied. This is despite research show-
ing that the actual amount of N supply 
required to achieve these yields has 
remained relatively stable over time. 
This study was conducted to compare 
two commonly used N determination 
methodologies to potential alterna-
tive N management approaches in the 
Northwest U.S. sugarbeet production. 
In 2020 and 2021, studies were con-
ducted in six locations by the Amal-
gamated Sugar Company (ASCO) to 
evaluate current and proposed N sup-
ply recommendations on sugarbeet 
production. The N supply treatments 
were determined using the industry 
standard yield goal N management 
(YGNM) method, recommendations 
from a commonly used agricultur-
al consultant business (ACB), and 
3 rates representing a range of a 
proposed alternative to the YGNM 
approach, Static Range N Manage-
ment (SRNM) low, SRNM med, and 
SRNM high. Two of the study sites 

had significant treatment effects on 
root and sucrose yield. The N supply 
needed to maximize sucrose yields 
at the 2 responsive sites was 202 and 
218 kg N/ha. For five of the six site-
years, the SRNM low N supply treat-
ment met or was closest to the N sup-
ply required to maximize yields. For 
the sixth site-year, the SRNM med N 
supply treatment maximized yield. 
Nitrogen requirement calculated us-
ing the YGNM approach, resulted in 
an average of 91 kg N ha-1 in excess 
fertilizer N being applied. This rep-
resented an economic cost of $79 to 
$200 ha-1 depending on N price (2018 
to 2022 U.S. prices used). The ACB 
recommendations resulted in even 
greater excess N fertilizer applica-
tion, an average of 140 kg N ha-, cost-
ing from $122 to $308 ha-1 depending 
on N price. The SRNM approach bet-
ter matches N supply with crop need 
compared to the YGNM and ACB N 
recommendations over time. Results 
from this study indicate that sugarbeet 
growers should evaluate the needed N 
supplies in their growing area and fol-
low a SRNM approach.

Additional Key Words: sugarbeet, 
sugar beet, nitrogen, nitrogen man-
agement

Abbreviations: N = Nitrogen, 
YGNM = yield goal nitrogen man-
agement, SRNM = static range ni-
trogen management, NUE = nitro-
gen use efficiency, Nr = nitrogen 
requirement; PJTP =  Predicted 
thick juice purity.

Nitrogen (N) management is import-
ant in sugarbeet production because 
it can affect both yields and quality 
(Stout, 1960; Tarkalson et al., 2016a). 
Under supplying N can reduce yields 
while over supplying N often results 
in decreased root sucrose content and 
increased root impurities which de-
creases sucrose extraction efficiency 
(Carter and Traveller, 1981; James et 
al. 1971). In addition, over supplying 
N can lead to increased N losses to 

the environment and represents an un-
necessary cost to the grower. Over ap-
plication or inefficient use of N fertil-
izers can result in excessive losses of 
NO3-N to surface and ground water. 
Nitrate movement to ground water is 
a concern in many agricultural areas 
receiving N inputs (Jokela, 1992). 
These concerns are even more rele-
vant in areas where ground water is a 
major source of drinking water. High 
NO3-N in drinking water supplies is 
a health concern (Keeney, 1982). In 
Idaho, 95% of the public water sup-
ply comes from ground water (Idaho 
Department of Environmental Quali-
ty, 2019). In a 2019 study, The Idaho 
Department of Environmental Quality 
found that 21% of the 251 well sam-
ples collected across Idaho exceed-
ed the maximum contaminant level 
of 10 mg NO3-N L-1 imposed by the 
U.S. Environmental Protection Agen-
cy (EPA) and 26% of the samples 
were between 5 and 10 mg NO3-N L-1 
(Idaho Department of Environmental 
Quality, 2019). Because of the unique 
relationship between N and sugarbeet 
quality/quantity, and potential nega-
tive environmental effects from over 
application of N fertilizers, periodic 
research studies have been conduct-
ed in the Northwest U.S. sugarbeet 
growing area to determine sugarbeet 
N requirements Because of the unique 
relationship between N and sugarbeet 
quality/quantity, and potential nega-
tive environmental effects from over 
application of N fertilizers, periodic 
research studies have been conducted 
in the Northwest U.S. sugarbeet grow-
ing area to determine sugarbeet N re-
quirements. 

The sugarbeet production in the Pa-
cific Northwest is located primarily 
from south central Idaho to south-
eastern Oregon. Beets are produced 
by growers who are part of the Amal-
gamated Sugar Company (ASCO), 
a grower-owned cooperative. From 
2011 to 2020 an average of 73,700 ha 
year-1 of sugarbeets were harvested in 
this growing area (NASS, 2022). 
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Historically in the Northwest U.S. 
sugarbeet growing area, a yield goal 
N management (YGNM) approach 
has been utilized to determine fertiliz-
er N requirement (Moore et al., 2009; 
ASCO, 2001). The basis of YGNM 
was to determine the total available 
soil N supply [soil (0-0.9 m) NO3-N 
and NH4-N + fertilizer N] needed 
to optimize sucrose and root yields. 
However, recent data analysis and 
research in the Northwest U.S. grow-
ing area has indicated that a YGNM 
approach can lead to over supplying 
N over time and a static N range ap-
proach may better match sugarbeet N 
supply needs (Tarkalson et al., 2016a; 
Tarkalson et al. 2018; Tarkalson, Ol-
sen, Bjorneberg, in submission, this 
issue). Improvements in N manage-
ment practices that better match N 
supply with crop need will improve 
production economics and reduce 
negative environmental impacts. The 
YGNM approach is based on research 
derived N requirement factors (Nr) 
multiplied by site-specific root yield 
goals. The Nr factor represent the kg 
of N needed to grow a Mg of sugar-
beet roots (kg N Mg-1 roots). Research 
from Tarkalson et al. (2016a) showed 
that the Nr factor (2.75-3.0 kg N Mg-1 
roots) was lower than previously re-
search-derived Nr factors (3.5 to 4.0 
kg N Mg-1 roots) (Tarkalson et al., 
2018). It was determined that the 
decrease in Nr was likely due to in-
creasing yields over time (Figure 1) 
and a relatively stable crop N supply 
requirement. This observation was 
highlighted in Tarkalson et al. (2018) 
and led to research in Tarkalson, Ol-
sen, Bjorneberg (in submission, this 

issue). Tarkalson, Olsen, Bjorneberg 
(in submission, this issue) found that 
the N supply required to maximize 
yields in research plots in 2018 and 
2019 (203 kg N ha-1) were similar to 
N supplies required in research stud-
ies conducted from 2005 to 2010 (202 
kg N ha-1), even when the root yields 
increased by 22% over the time be-
tween the research studies. Prior to 
major adjustments in the Northwest 
U.S. sugarbeet growing area, addi-
tional research was needed fine-tune 
comparisons of the SRNM with other 
N management approaches. 

The objective of this study was to 
compare sugarbeet yield and quality 
factors using a SRNM, YGNM, and 
a commonly used agricultural consul-
tant business (ACB) N management 
approach in the Northwest U.S. 

MATERIALS AND METHODS
Site Characteristics
The studies in this paper were con-
ducted in 2020 and 2021 at six re-
search sites (Table 1). The sites 
ranged across the southern Idaho 
sugarbeet production area. All sites 
had the same tillage practices (con-
ventional), spring soil sample depth 
(0-0.9 m), row spacing (0.56 m), N 
source (urea), and timing of N ap-
plication (4 to 6 leaf stage) (Table 
1). Research has shown that the 4 to 
6 leaf stage is the start of significant 
crop N uptake (ASCO, 2020). Other 
cultural and experimental practices 
varied across sites (plot size, N ap-
plication rate, treatment replications, 
irrigation system, planting date, gly-
phosate application timings, planting 
date, and harvest date) (Table 1). 

N Application
Prior to N fertilizer treatment appli-
cations in spring, four cores were tak-
en in each rep to a depth of 0.9 m in 
0.3 m depth increments. Soil samples 
were analyzed for nitrate-N (NO3-N) 
and ammonium-N (NH4-N) after 
extraction in 2M KCl (Mulvaney, 
1996) using a flow injection analyzer 
(Lachat Instruments, Loveland, CO). 
At each site, the 0-0.9 m NO3-N and 
NH4-N in was averaged across all 
cores to determine site N supply.

Six N supply treatments (fertilizer N 
+ residual inorganic soil N [NO3-N + 
NH4N]) were applied and replicated 
six times in 2020 and eight times in 
2021 and arranged in a randomized 
block design. The treatments were a 
control (no fertilizer N), SRNM low 
range rate, SRNM medium range rate, 
SRNM high range rate, YGNM rate, 
and an ACB N supply recommenda-
tion (the ACB does not directly or in-
directly sell fertilizer). Treatment N 
supply specifics are detailed in Table 
2. The SRNM treatments were based 
on past research studies (Tarkalson et 
al, 2016a; Tarkalson, Olsen, Bjorne-
berg, in submission, this issue). For 
the YGNM treatment, the N supply 
recommendation are based on current 
published recommendations (ASCO, 
2020; Tarkalson et al., 2016a). The 
site YGNM calculations were: 
YGNM N Supply (kg N ha-1) = Nr 
(kg N supply Mg-1 root) × Yield 
Goal (Mg roots ha-1) 
Site 1 YGNM N supply (kg N ha-1) 
= 3 kg N supply Mg-1 root × 92 Mg 
roots ha-1

Site 2 YGNM N supply (kg N ha-1) 

Table 1. Site information for the Idaho study sites.

Site-
Year City, County Year

Soil Tex-
ture Plot Size

Harvest 
Length

Irrigation 
System Variety

No. Treatment 
Replications

Plant 
Date

Harvest  
Date

1 Jerome, Jerome 2020 loam 3.4m ×11.1m 11.1m wheel line BTS 251N 6 Apr 17 Oct 5
2 Nampa, Canyon 2020 silt loam 3.4m × 7.3m 7.3m drip BTS 251N 6 Mar 24 Oct 5
3 Fruitland, Payette 2020 silt loam 3.4m × 7.3m 7.3m furrow BTS 251N 6 Apr 13 Sept 30
4 Burley, Minidoka 2021 silt loam 3.4m × 11.4m 11.4m wheel line Crystal A702NT 8 Apr 7 Oct 7
5 Jerome, Jerome 2021 silt loam 3.4m × 11.1m 11.1m wheel line Crystal A702NT 8 Apr 3 Sep 28
6 Nampa, Canyon 2021 silt loam 3.4m × 7.3m 7.3m drip Crystal A702NT 8 Apr 1 Sept 27
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= 2.75 kg N supply Mg-1 root × 114 
Mg roots ha-1

Site 3 YGNM N supply (kg N ha-1) 
= 2.75 kg N supply Mg-1 root × 119 
Mg roots ha-1

Site 4 YGNM N supply (kg N ha-1) 
= 3 kg N supply Mg-1 root × 101 Mg 
roots ha-1

Site 5 YGNM N supply (kg N ha-1) 
= 3 kg N supply Mg-1 root × 92 Mg 
roots ha-1

Site 6 YGNM N supply (kg N ha-1) 
= 2.75 kg N supply Mg-1 root × 112 
Mg roots ha-1

Yield Goals are based on actual root 
yields over the previous 5 years 
(2015-2019 average) from the site 
area. Any slight variations in calcula-
tions above and values in Table 2 are 
due to rounding errors.

A subsample of the spring soil samples 
and yield goals (same as for YGNM 
treatments) from each site were sent to 
an ACB for analysis and a N fertiliz-
er recommendation. The ACB N rec-
ommendations are proprietary, so we 
have no information on the calcula-
tions. However, when multiplying the 
ACB recommended N supplies by the 
yield goals, the Nr factors range from 
6.5 to 6.8 kg N supply Mg-1 root. For 
all sites, N treatments were applied as 
urea fertilizer and immediately incor-
porated using conventional tillage. 

Harvest and Analysis
Root yield was measured in each 

plot using a load cell scale mount-
ed to a plot harvester. From each 
plot, two defoliated rows (1.12m) 
was harvested across the entire plot 
length (Table 1). Three samples per 
plot (each at least 12 kg of harvest-
ed roots) were collected and ana-
lyzed at the ASCO tare lab for per-
cent sucrose, nitrate concentration, 
and electrical conductivity. Percent 
sucrose was determined using an 
Autopol 880 polarimeter (Rudolph 
Research Analytical, Hackettstown, 
NJ), a half-normal weight sample 
dilution, and aluminum sulfate clar-
ification method [ICUMSA Meth-
od GS6-3 1994] (Bartens, 2005). 
Conductivity was measured using a 
Foxboro conductivity meter Mod-
el 871EC (Foxboro, Foxboro, MA) 
and nitrate was measured using a 
Model 250 multimeter (Denver In-
struments, Denver, CO) with Ori-
on probes 900200 and 9300 BNWP 
(Krackler Scientific, Inc., Albany, 
NY). The kg recoverable sucrose 
yield per Mg of roots was estimat-
ed by: [(percent extraction)(0.01)(kg 
gross sucrose/ha)]/( gross root yield 
Mg/ha), where percent extraction 
= 250 + [[(1255.2)(conductivity) – 
(15000)(percent sucrose - 6185)]/
[(percent sucrose)(98.66 – [(7.845)
(conductivity)])] ] and gross sucrose 
(Mg/ha) = (gross root yield, Mg/ha)
(percent sucrose)(10). The PTPJ was 
estimated by: 97.66914 - (0.00609 x 
Nitrates) - (4.10676 x Conductivity).

Statistical Analysis  
and Calculations
Statistical analyses were conducted 
separately for each site. Analysis of 
variance was conducted for N supply 
treatment main effects on the selected 
production factors of sucrose yield, 
root yield, N use efficiency, N re-
quirement, root sucrose percent, and 
root brei nitrate concentration using 
a randomized block design model in 
Statistix 8.2 (Analytical Software, 
Tallahassee, FL). Nitrogen use ef-
ficiency was defined as the quantity 
of sucrose produced per kg N supply 
(fertilizer N + spring soil residual 
inorganic N). Nitrogen requirement 
was defined as the kg N supply per 
Mg of harvested sugarbeet root.

For site-years with significant N sup-
ply main effects on root and sucrose 
yield, the maximum yield was iden-
tified by comparing adjacent numer-
ically ordered means using the least 
significant difference method (LSD) 
at the 0.05 probability level. For each 
site-year with no significant N supply 
main effect on yields, the yield for the 
control treatment was considered the 
maximum yield. 

For fertilizer economic calculations, 
mean Urea prices over the past  
5 years (2018-2022) were used 
(DTN, 2022). 

RESULTS AND DISCUSSION
There were significant effects of N 
supply treatments on root and/or su-

Table 2. Site-year yield and N treatment information for sugarbeet at the Idaho study sites.

Site- 
Year

No. Treatment 
Replications

Field 5-Year 
Root Yield 
Average

Idaho 5-Year  
Root Yield  
Average Control 

SRNM†  
Low SRNM Med SRNM High YGNM‡ ACB ¶

-----------Mg ha-1----------- ---------------------kg N Supply ha-1 (kg N Fertilizer ha-1) ---------------------
1 6 92 90 132(0) 202(69) 230(97) 258(125) 276(143) 298(166)
2 6 114 90 196(0) 202(6) 230(34) 258(62) 314(118) 372(176)
3 6 119 90 137(0) 202(65) 230(93) 258(121) 328(192) 394(258)
4 8 101 90 148(0) 202(54) 230(82) 258(110) 302(155) 336(188)
5 8 92 90 174(0) 202(28) 230(56) 258(84) 274(101) 314(140)
6 8 112 90 218(0) 218(0) 230(11) 258(39) 308(90) 381(162)

† SRNM = Static Range N Management
‡ YGNM = Yield Goal N Management. Nr = 2.75 to 3 kg N Mg-1 root yield goal (ASCO, 2020; Tarkalson et al. 2016a; Tarkalson et al. 2015). 
¶ ACB = Agricultural Consultant Business.
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Table 3. Site-year sugarbeet root yield, sucrose yield, nitrogen use efficiency (NUE), root sucrose percent, root nitrate concentra-
tion, root conductivity, and root juice purity (PJTP) concentration from sugarbeet grown at six sites in southern ID, 1-3 in 2020 
and 4-6 in 2021. Analysis of variance (ANOVA) for relationships between N supply and the listed measurements is shown. For 
significant ANOVA main effects (p< 0.05), the least significant difference (LSD) method was used to compare numerically adja-
cent measurements to determine maximum yields. For maximum root or sucrose yields, treatment ID’s and maximum yield N rates 
(MYNR) are bolded. For studies with no significant relationships between N supply and yields, the control is considered the maxi-
mum treatment. 

Site 
Year

Treatment ID
kg ha-1

N Supply
kg ha-1

Root Yield
Mg ha-1

Sucrose 
Yield

Mg ha-1

NUE
kg sucrose 

kg-1 N

Root 
Sucrose

%

Root 
Nitrate
mg kg-1

Root Conductivity
mmhos cm-1

PJTP
%

1 Control 132 96.6 b 16.6 b 125.6 a 19.7 35.2 0.63 94.9
SRNM Low 202 111.2 a 18.9 a 93.6 b 19.6 30.4 0.64 94.9
SRNM Med 230 115.8 a 19.7 a 85.9 c 19.5 26.5 0.60 95.0
SRNM High 258 114.8 a 19.5 a 76.6 d 19.4 29.5 0.59 95.1

YGNM 276 115.3 a 19.5 a 70.8 de 19.4 28.4 0.60 95.0
ACB 298 116.4 a 19.5 a 65.6 e 19.3 32.7 0.61 94.9
p>f 0.001 <0.001 <0.001 0.092 0.647 0.657 0.698

2 Control 196 136.5 19.1 97.5 a 17.2 365.7 0.99 91.4
SRNM Low 202 133.0 18.2 90.5 b 16.8 433.3 0.99 91.0
SRNM Med 230 136.0 18.6 81.2 c 16.8 430.0 1.00 91.0
SRNM High 258 136.5 19.2 74.5 d 17.0 412.0 0.92 91.4

YGNM 314 136.6 19.1 60.9 e 16.9 386.9 0.93 91.5
ACB 372 144.8 19.7 53.0 f 16.9 449.8 1.08 90.5
p>f 0.214 0.348 <0.001 0.616 0.779 0.059 0.0391

3 Control 137 123.6 18.2 133.0 a 16.9 130.8 0.61 94.3
SRNM Low 202 123.7 18.6 92.1 b 17.1 118.6 0.54 94.7
SRNM Med 230 122.7 18.2 79.4 c 17.0 126.2 0.57 94.6
SRNM High 258 118.0 17.3 68.2 d 16.8 119.0 0.58 94.6

YGNM 328 118.3 17.7 53.9 e 17.1 135.2 0.55 94.6
ACB 394 119.3 17.8 45.1 f 17.0 124.7 0.55 94.7
p>f 0.910 0.905 <0.001 0.148 0.400 0.842 0.793

4 Control 146 91.3 c 16.2 111.7 a 20.2 a 17.8 b 0.57 95.2
SRNM Low 202 95.5 bc 16.9 84.2 b 20.1 a 20.4 b 0.57 95.2
SRNM Med 230 105.5 ab 18.6 80.4 b 20.1 a 20.2 b 0.56 95.2
SRNM High 258 103.9 ab 18.4 71.2 c 20.1 a 22.9 b 0.57 95.2

YGNM 302 104.1 ab 17.9 59.2 d 19.7 b 30.1 a 0.59 95.0
ACB 336 105.6 a 18.2 54.2 d 19.7 b 30.3 a 0.61 95.0
p>f 0.014 0.054 <0.001 <0.001 <0.001 0.177 0.082

5 Control 174 100.3 16.6 95.5 a 19.1 26.3 b 0.68 94.7
SRNM Low 202 103.6 16.8 83.3 b 19.0 26.6 b 0.69 94.7
SRNM Med 230 103.0 16.8 73.1 c 19.1 25.7 b 0.70 94.6
SRNM High 258 103.6 17.0 65.9 d 19.0 27.7 ab 0.68 94.7

YGNM 274 102.9 16.8 61.2 e 19.0 29.9 ab 0.67 94.7
ACB 314 103.5 16.6 53.0 f 18.7 32.0 a 0.71 94.5
p>f 0.840 0.947 <0.001 0.312 0.049 0.756 0.490

6 Control/ SRNM Low 218 115.7 18.5 84.5 a 18.8 ab 47.6 0.88 93.8
SRNM Med 230 121.8 19.4 84.6 a 18.8 ab 41.8 0.83 94.0
SRNM High 258 121.5 19.2 74.4 b 19.0 a 43.8 0.92 93.6

YGNM 308 128.1 19.9 64.6 c 18.7 b 53.5 0.89 93.7
ACB 381 123.8 19.3 50.7 d 18.7 b 55.6 0.88 93.7
p>f 0.181 0.373 <0.001 0.018 0.340 0.117 0.128
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crose yields for site years 1 (Jerome 
2020) and 4 (Burley 2021) (Table 3). 
The N supply for the maximum su-
crose and root or sucrose yields were 
highlighted in bold lettering in Table 
3. For the remaining site-years there 
was no significant relationships be-
tween N supply treatments and yields 
(Table 3). The N supplies treatments 
that maximized yields for site-years 
1 and 4 were the SRNM low and 
SRNM med rates (average N supply 
= 216 kg N ha-1). For site years 2, 3, 
5 and 6, the control treatment aver-
age N supply was 181 kg N ha-1. The 
maximum sucrose and root yields for 
site-years 1 and 2 were similar, 18.9 
and 18.6 Mg sucrose ha-1 and 111.2 
and 105.5 Mg roots ha-1, respective-
ly. Across site-years 2, 3, 5 and 6, the 
sucrose and root yields for the con-
trol treatments ranged from 16.6 to 
19.1 Mg sucrose ha-1 and 100.3 and 
136.5 Mg roots ha-1. The average root 
yield across all sites and N supply 
treatments was 115.8 Mg roots ha-1, 
22.5% greater than the average yields 
in Idaho during 2020 and 2021 (89.7 
Mg roots ha-1) (Figure 1). 

The SRNM low N supply treatment 
met or was closest to the N supply re-
quired to maximize yields than either 
the YGNM or ACB N supply treat-
ments for 5 of the 6 site years. For the 
remaining site-year, the SNRN med 
N supply treatment resulted in max-

imizing yield. This data agrees with 
past research showing that the SRNM 
approach to determining N supply re-
quirement better matches sugarbeet 
N supply needs than the YGNM ap-
proach (Tarkalson, Olsen, Bjorneberg, 
in submission, this issue; Tarkalson 
et al., 2018). In this study, the ACB 
supply treatment used a Nr multipli-
er ranging from 3.2 to 3.4 kg N Mg-1 
roots, which is higher than the range 
of Nr values used in the current indus-
try recommended YGNM approach 
(2.75-3.0 kg N Mg-1 roots) (Tarkalson 
et al., 2016a; Tarkalson et al., 2015; 
ASCO, 2020). By comparison, the 
calculated Nr factor from site-year 1 
and 2 of this study was 2.0 kg N Mg-1 
roots. Tarkalson, Olsen, Bjorneberg 
(in submission, this issue) showed that 
research derived Nr factors have been 
decreasing over time due to increasing 
yields (Figure 1) over time and a sta-
ble sugarbeet N supply requirement 
to reach maximum yields over time, 
supporting past research conclusions 
that a SRNM approach better meets 
sugarbeet N supply requirements than 
a YGNM approach (Tarkalson, Olsen, 
Bjorneberg, in submission, this issue; 
Tarkalson et al., 2018).    

The YGNM and ACB N supply rec-
ommendations over supplied N at all 
site-years (Table 4). For site years 1 
and 2, the amount of excess N was 
determined by subtracting the YGNM 

and ACB N supply recommendations 
from the N supply needed to reach 
maximum yields (site-year 1 = 202 
kg N ha-1, site-year 4 = 230 kg N ha-1) 
(Table 3). For site years 2, 3, 5 and 
6 the amount of excess N was deter-
mined by subtracting the YGNM and 
S ACB N supply recommendations 
from the N supply of the SRNM low 
treatment even though there were no 
differences in yields across all treat-
ments. Although the yields were 
maximized at the N supply of the 
control treatment, in a real-world pro-
duction setting, a recommendation 
of supplemental N would have been 
made based on established recom-
mendations. Across all site-years, the 
YGNM approach recommended an 
average of 91 kg N ha-1 of excess N 
fertilizer. Depending on the price of 
urea in a given year, this represent-
ed unnecessary cost to the grower of 
between $79 to $200 ha-1 (Table 4). 
The ACB N recommendation was 
even less accurate, averaging an ex-
cess of 140 kg N ha-1 across all site-
years, and adding unnecessary cost to 
the grower of between $122 to $308 
ha-1 (Table 4). These savings in fer-
tilizer when averaged across all acres 
growing sugarbeets will likely have a 
positive environmental impact due to 
less N being lost below the root zone 
or in runoff. This and other research 
updating crop fertilizer N recommen-
dations can have a significant effect 
on the existing high NO3-N levels 
in groundwater in Idaho. In a 2019 
study, The Idaho Department of Envi-
ronmental Quality found that 21% of 
the 251 well samples collected across 
Idaho exceeded the maximum con-
taminant level of 10 mg NO3-N L-1 
imposed by the U.S. Environmental 
Protection Agency (EPA) and 26% of 
the samples were between 5 and 10 
mg NO3-N L-1 (Idaho Department of 
Environmental Quality, 2019). 

For all site-years, N supply treat-
ments had a significant effect on 
NUE, and NUE was highly correlat-
ed to N supply (Table 3, Figure 2). As 
N supply increased, NUE decreased. 
The NUE at the mean N supply re-
quired for maximum yield for the Figure 1. Average Idaho sugarbeet yield over time (USDA-NASS, 2022).
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two responsive site years (216 kg N 
ha-1) was 85.7 kg sucrose kg-1 N. This 
NUE was higher than previous stud-
ies conducted in southern Idaho. In 
research conducted in 2018 and 2019 
the NUE was 75.2 kg sucrose kg-1 N, 
and in research conducted from 2005 
to 2010 the NUE was 60.3 kg sucrose 
kg-1 N (Tarkalson, Olsen, Bjorneberg, 
in submission, this issue; Tarkalson 
et al., 2016a). As root yields increase 
over time and N supply required to 
reach maximum root yields remains 
relatively stable, the NUE increases. 
The increase in NUE over time indi-
cates that a SRNM approach is valid.

For site-years 1, 2, 3, and 4, N sup-
ply did not affect the quality factors 
(root sucrose percentage, nitrate, con-
ductivity, and juice purity) (Table 3). 
Some past research has indicated that 
sugarbeet root sucrose is negatively 
correlated with increasing N supply 
(Varga et al., 2022; Franzen, 2018; 
Tarkalson et al, 2016a; Tarkalson et 
al, 2016b; Schmehl, 1963). However, 
other research has shown no relation-
ship between N supply and sugarbeet 
root sucrose (Tarkalson et al., 2012; 
Tarkalson et al, 2016a). In our study, 
only site-year 4 had a significant re-
lationship between N supply and 
sugarbeet root sucrose percent, with 
the highest rates of N supply show-
ing the lowest sucrose percent (Table 
3). Although statistically significant, 
even these lowest sucrose percentag-
es were still high compared to historic 
industry averages. The highest root 
sucrose percentage for site year 4 was 
20.2%. Nitrogen supply treatments 
significantly affected root nitrate con-
centrations for site-years 4 and 5 only. 
Across all sites root nitrates concen-
trations ranged from 450 to 18 mg 
kg-1, with most concentrations lower 
than the critical threshold considered 
harmful for sucrose % or sugar qual-
ity. Past research has indicated that 
root nitrate concentrations greater 
than 200 mg nitrate kg-1, can cause 
reductions in root sucrose percent 
(Tarkalson et al., 2016b). Only site 2 
had root nitrate greater than 200 mg 
kg-1 (Table 3). At sites 4 and 5 higher 
rates of N supply caused significant-

Table 4. Excess fertilizer N amount for sugarbeet and cost from 2018 to 2022 for the 
YGNM and ACB recommended N supplies relative to the optimal SNMR N supply for 
sugar beet in ID for six site years, 1-3 in 2020 and 4-6 in 2021. Fertilizer N cost was 
calculated using the U.S. average cost of urea for each year (DTN, 2022). For site-
years 1 and 4, the optimal SRNM supply was the N supply that had the maximum yield 
(Table 3). For site-years 2, 3, 4, and 6, the optimal N supply was considered the SRNM 
Low treatment (Table 3). We assumed that in a production setting, a SRNM Low N 
supply was recommended.

Excess N Calculation
Site 
Year

Excess 
Fertilizer N 

-------------Cost of Excess N-------------
2018 2019 2020 2021 2022

kg N ha-1 ------------------$ ha-1 -------------------
$0.88 $0.97 $0.87 $1.57 $2.20

YGNM-SRNM Low 1 74 $65 $72 $65 $117 $163 
YGNM-SRNM Low 2 112 $99 $109 $97 $176 $246 
YGNM-SRNM Low 3 126 $111 $122 $110 $198 $277 
YGNM-SRNM Med 4 72 $63 $70 $63 $113 $158 
YGNM-SRNM Low 5 72 $63 $70 $63 $113 $158 
YGNM-SRNM Low 6 90 $79 $87 $78 $141 $198 

Mean 91 $80 $88 $79 $143 $200 
ACB - SRNM Low 1 96 $84 $93 $84 $151 $211 
ACB - SRNM Low 2 170 $150 $165 $148 $267 $374 
ACB - SRNM Low 3 192 $169 $186 $167 $301 $422 
ACB - SRNM Med 4 106 $93 $103 $92 $166 $233 
ACB - SRNM Low 5 112 $99 $109 $97 $176 $246 
ACB - SRNM Low 6 163 $143 $158 $142 $256 $359 

Mean 140 $123 $136 $122 $220 $308 

Figure 2. Sugarbeet N use efficiency (NUE) versus N supply for site years with sig-
nificant N supply main effects (Table 3). Regression model was fit to all data. Points 
represent individual site-year values. Points represent individual plot values at the 
Idaho sites.
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ly, though not agronomically import-
ant, higher root nitrate concentrations. 
Across all site-years, there was no sig-
nificant effect of N supply treatments 
on root conductivity. Conductivity 
ranged from 0.54 to 1.0 mmhos cm-1, 
values considered normal for sugar-
beet production. Likewise, PTJP was 
unaffected by N supply and within 
range considered typical for sugar-
beet production. Across all site years 
and N supply treatments, the average 
root conductivity and PJTP was 0.71 
mmhos cm-1 and 94.0%, respectively 
(Table 3). 

CONCLUSIONS
This research demonstrated that 
high yields can be achieved at N 
supply levels much lower than 
those recommended by the YGNM 
or ACB methods, without negative 
quality issues. This will result in 
improved N use efficiency and re-
duced fertilizer N costs for grow-
ers. For 5 of the 6 site-years in 
this study, the SRNM low N sup-
ply treatment met or was closer to 
the N supply required to maximize 
yields than either the YGNM or 
ACB N supply treatments. For the 
sixth site, the SRNM med N supply 
treatment maximized yield. Fol-
lowing the current recommended 
YGNM approach, an average of 91 
kg N ha-1 in excess fertilizer N was 
applied, costing from $79 to $200 
ha-1 depending on N price varia-
tions from 2018 to 2022. Follow-
ing the current recommended ACB 
N recommendations, an average of 
140 kg N ha-1 in excess fertilizer 
N was applied costing from $122 
to $308 ha-1 depending on N price 
variations. Of the three SRNM lev-
els tested, the low and mid rates 
were superior in maximizing yields 
than the SRNM high treatment. The 
SRNM approach better matches N 
supply with crop need compared to 
the YGNM and ACB N recommen-
dations over time. 
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