Heterodera schachtii, Hatching Properties of Field Importance

David R. Vighmaghión

Biological studies with the sugar beet nematode would be geatly facilitated by a continuing large supply of cysts of known origin and predictable character. For the development of large scale rearing of Heterodero schuchii it was of importance to have some knowledge of what events took place during the incrase in population. In the course of experiments to chacidate the behavior of the plant parasites, knowledge was ohtaned which was uselul in the explanation of some field observations and in the design of applied experiments.

Materials and Methods

For the study of population imorease. sugar beets growing in sand in 6 -ind pots were infected by adding 100 larve per pot. The plants were divided into 4 lots of 10 plants and one lot was harvested every 6 weeks; cysts and white females vere separated from roots and sand, screened, and collected for counting. Full and empty cysts were separated by picking before counting.

For studies with white lemales, young sugar beet plants growing vigorously in sand were infested with freshly hatched second stage larvac of Heferodeva schachii. Nfter 36 days the plants were havested and the roots and sud in which they were grown were thoroughly washed to collect the white femates and cysts. White females without egg masses were selected from this source. frory or darker-colored females as well as eysts were discarded. The white lemales as well as other batobes of cysts were tested for hateh response to a lyophilized material containing hatehing factor. The cysts were used to confirm the activity of the hateh solution. The eysts and remales were suspended at the surface of the solution by stainless steel sereens in embryo dishes containing 2.5 ml . active solution. Each series containing six replicates of 75 white females of cysts was imoubated in a humidity box at 25° C. ${ }^{3}$ Nter collection of the larvac. the ative solution was replaced.

[^0]

Figure 1.--Population increase of Heterodera shachtii Schm. Trom an intial infestation of 100 larvae. The solid circle represents the average of the rotal number of cysts; the open circle represents the average number of fuller cysts; the triangle represents the average number of white females.

Results and Discussion

Population increase

The curve described by eyst numbers is exponential as one would expect (Figure 1). With less than a hundred larvae whids infected each plant and good growing conditions, a high population (white lemales plus cysts) developed in about the time period of two generations. This then explains how, with low populations in areas where the growing season permits less than two geneations, it maty be possible ta employ shomer rotation periods safely, prowided the nematole atrition rate is high enough. Effective control by rotation is dependent upon inital infestation as well as the rates of increase and decrease of the population. (For example, a similar experiment with about fwice the initial infestation was found to give an addifonal filty fold increase in cysts in 24 weeks.)

In 24 weeks there are an appreciable number of cysts which are not full; vio, the difference between the two curves -dots, circles. Since cyst walls do not decompose readily, there is an inherent danger in the use of cyst coumts as a population density indicator. In a heavily infested held on the order of 90% of the cysts can be empty (18); in addition there is the conlounding problem of full cysts with non-riable contents resulting, for example, from fumigation, drying, ete. A simple unqualified syst count is likely to be meaningless as an estimate of population potential.

The remaning curve dearly indicates the danger of incautions use of a white lemale comt as a population indiator. It an be seen, for example, that a coum of 500 com either comptise over 95 percent of the potential (indining potion of curve) or less than 16 percent (dedining portion of curce). 'The steepness of the gradient also shows that the growh period is an important factor. The evidence here presented serves as a rominder of the wide variability of which the animal is capable.

With respect to field problems, it can be said with eertamty that, if sugar beet nematode cyst counts an be made from field samples, then at some time Helerodera shachii was present and may still be present; if white fenmle counts an be made, H. schachio is present. Any estimates ol population potential based on such counts must be interpreted with extreme atution since they an be misleading. A proper population estimate (neglecting the problems in effective sampling for the purposes of this discussion) would require the determimation of the vable contents of cysts and lemales. The chteria for a laboatory determination of viability are as yet poorly defned but a reasonable evaluation can be made by an emergence assay followed by oyst rupture and estimate of the viable remainder after the method of Feldmesser and Feder (4). The cation noted previously of the infuence of envirommental history (which. for pratical considerations includes the environment from the time the sample leaves the field and the assay is made) upon results of emergence assays and "egg" determinations must be stressed. The use of this approach in Europe, however, testifes to its practicality (6).

Hatch response of white femules

It had been observed that fresh gysts obtained from a growing bed gave very high water hatches when nearly all such cysts could

[^1]be at most 2 to 9 genevations old (initial infestation from larvac). In view of the population increase curve, it was of interest to investigate the hatch response of white females. The literature on this point appeas to contain conflicting views. Acoording to Goodey (8), Chatin (1) concluded that "il the eggs were destined to be set free immediately the wall broke down and liberated them. If, on the other hand, they were to remain within the body, the wall of the latter becane changed to a brown cyst . . ."

Fuchs (7) concluded that thoughou the summer months the majority of females remained white and after dropping off from the roots of the host, libeated larvae at once which then infected Presh roots and only towards autumn did brown cysts form in quantity and retain their eggs. Trifftt (12) reported that larvae are not set free from cysts whil the latter have turned brown. The first larvae issued about one month after the remotal of the parent woms from the roots. A similar conclusion had been suggested earlier by Sengbusch (10) according to Filipiev and Sohmummans Stekhoven (5).

Presumably, the report of Thome (11), that the cogs deposited in the gelatinous matrix at the posterion end of the lemale hated readily, was taken ino accomm. Wore recendy, Franklin (6) and Christie (2) have suggested that though many lavae in eggs can remain dormant within the cysts for many years, some are capable of hatching as soon as they are fully developed. This remark introduces a further complication as to the meaning of "fully developed," since the term was meither qualified nor explained.

It is obvious that there is considerable hath of lanac from the white females used in this experiment (Figure 9). It should also be apparent that there is a signifocant increase in hatch due to an active component in the hatch factor material. Though the percent increase in emergence is the same or less than that of the cyst controls, the incrase in number of larwe emerging is greater than the total hatch of the best cyst trial.

The use of trap cropping as a control procedure has been considered risky. The hatching obtained with white females serves to confim the havards of the practice. In the use of any but immune crops the period of plant growth may be too short to make the trap apop uselul.

Of equal importance lor asay purposes is that in the intertal cxamined, emergence is a linear fonetion of time Practiolly, it is far simpler to relate linear functions than complex functions. The linear curve indicates that emergence is independent of potential, i.e., not a function of hathable larae; either there is an excess of hathable larvae initially or they mature to this state during the experiment at ate greater than emergence so

Figure 2--The hatch response of 75 Heterodera shachtii Schm. white females and cysts from diflerent somaces. The solid circle represents the average water hatch; the open circle represents the average response to lyophilied sugar beet leachings at $1.0 \mathrm{mg} / \mathrm{ml}$; the trangle represents the average response to leached material at $0.04 \mathrm{mg} / \mathrm{ml}$.
that the potential pool of hatchable lavae in white females is not limiting. In the case of cysts the larvae presumably have had ample time for maturation so that the hatchable larvae potential could not be limiting. The hatching from white females is reflected as a maximum with increasing concentration of active component. The response reflected by the wet cysts from plants is a minimum, whereas the response of the "dried" cysts is still different.

It appears difficult to reconcile these observations with the report of Jones (9) that "A period of maturation appears to be necessary before eggs are lully sensitive to hatching stimuli," and Duggan (3) that a period of four weeks for maturation was necessary for cysts of H. schachili before they were capable of hatching. The conclusions of Jones or Duggan are based on indirect evidence perhaps interpretable in other ways. The hatch tests
reported here were conducted under artificial conditions but it seems unlikely that an egg able to hatch from a white female detached from a root would be unable to hath from a lemale attached to a root. More likely the sequence of envirommental conditions during the development of the amimals precoding emergence effed the observed responses. The apparent disagreement is an indication of our poor understanding of the factors governing hatching.

In this report the hatch-active factor in all cases is of the same batch and at the same concentration and the cysts and lemales are of common ancestry; therefore, one must conclude that the environmental history of the animals previous to testing is in part responsible for the differences in emergence. This being the case, then caution need be exercised in the comparison of hatch data from cysts of different origins or in the interpretation of occasional hatch tests with an unstandardized batch of cysts.

Figure 3.--. The total harval hatch response per white female from two sources and per cyst from two sources after 12 days. Left bar, the response with water; right bar, the response to lyophinzed leaching at $0.04 \mathrm{mg} / \mathrm{ml}$.

In lact, there is no definite assurance that the reaction resulting in an increased hath rosponse is the same in white fomales as in wet cysts liom a plant, i.e., the agent that is limiting may not be the same. In such a ase the use of anmals whose envirommental history is une ermin could lead only to disaster. Figure 3 illustrates these points. The total momber of lavae emerging in 12 days with fwo concentrations of attive factor, namely 0.0 and $0.04 \mathrm{mg} / \mathrm{ml}$. The hath from another bateh of white lemales of undetermined age obtained from soil is also shown. The results are quite different which, in view of the previous discussion, conld be expected.

Summary

The population merease of Heteroder sohnchtii begimning with the addition of 100 infortive second stage lavae to ead pot of 4 lous of growing sugar bects is lollowed by harvesting a lot at 6 -reek intorvals over a 24 week period. Sand and roons were washed, sereened, and counts were made of total cysts, full cysts and white females. Cyst numbers increase exponemially and empty cysts begin to appear about the 15 he week. The numbers of white lemales increase 10 a maximum then decrease during the 24 week interval.

White lemales less than 96 days old and with no visible egg masses were found to hath profusely in distilled water. Immersion of the white femates in lyophilized sugar beet leachings was observed to stimulate increased hathing over water controls.

Literature Cited

(1) Comans, 1. 1887. Sur ios yotes brums de lamgullute de betterane. C. R. Ac. Sei. CV: 180-132.
(2) Cumone, Jrsse R. 1099. Plant nematodes-their bionomics and control. Agric. Lxp. Sta., Init, of Horda, Gamorvile, Florida, p. 89.
(8) Degisx. J. J. 1959. On the number of gencration of beet colwom, Heterodem sehuhti Shm protured in a year. Nematologica 4(1):241-241.
(1) Fehmosser, J. and Fbor, W, A. 195t. Mamaining and detemining wability of nematodes in siteo, Soil Sci. Fla, Proc. 1才: Vat-157.
 of Agriculual Heminhology. F. J. Brill, leiden, p. 220.
(6) Fraskin. Mary T. 14h1. The cystomming spectes of Hetorodew. Gommonweath Ggrotural Bumanx, Fomham Royal, Bucks, England, p. 18.
(0) Ftens, O. Iohl. Behrage fur Biologie der Rubemmenatoden, Heteredew shadtia. Z. Bandes. Vhsw. Ost. XIV: 929-949.
(8) Geobmy, T. 1933. Plant Patasitic Nematodes. F. P. Dutom \& Co.. New York p. 139.
(9) Jowes, F (i, W. 1056. Son pophations of bet celvom (fetmonem sthathti Sohm.) in relation to eropping. If Diemplon ame held plot resulte dun . Dppl. Biol. If(1): 25-36.

 sugn beet bematole, Heteootma whathil. Jour. Imer. Sen. Sug. Beet Ted. 10(4): 816320

[^0]: Rescarch fumds for this study were contributed in part by the Beet Sugar Development Foundation.
 ${ }^{*}$ Assistant Reseach Xematologist, Depatment of Plant Nematologs. Criversity of Calj. fomm, Davis, Califomia.

 For partical considethions mome of the brown cyst were bed but the ctares in fia
 by the che of the experiment.

[^1]: ascured.

