The Influence of Research on Efficiency of Sugar Beet Production

M. W. Parker

It is a pleasure for me to attend the Twolfth Genemal Meeting of the American Society of Sugar Beet Technologists and discuss the infuence of research on your industry. Too frequently we are inclined to forget research acomplismments that conmibute to developing, maintaining, and assuring the future of a sound industry. Some of these high lights will be brielly revieved in order to bring some of our current problems into sharper focus. In addition, I am certain that you will be interested in a few examples of our current basic research programs which benefi sugat beet production as well as other crops.

The sugar beet industry, including production, bas grown in importance in our agricultural economy at a pace commensurate with the increase in sugar quota and acreage allotments. These yearly manifestations of vigor and responsiveness to increase production demands may be atmbuted to several factors such as improved economic enviromment, new developments in technology, and more efficient management in industry and on the farm. But agricultural researh an justly cham oredit for the remarkable improvement in acreable yields of roots and sugar: increased efficiency in sugar production, including a reduction of labor requirements; and, above all, for protective measures against certain disease hazards that once seriously threatened contionance of growing sugar beets in several major districts.

The sugar beet, as other crops, has been through periods of discouragement. Many of you can recall the low yiclds and erratic productions of the twenties and early thirties when recoment epidemies of diseases, such as curly top in the West and leaf spot and black root in the eastern sugar-beet regions, resulted in low quality of roots for the processor and in unsatishactory returns to the grower. These diseases adversely influcnced the economy of beet sugar production for several years.

Reliel from these disease havards was not the result of some benevolent act of Mother Nature or a change in the weather. Actually the diseases are still present, but protection has been accomplished through the development of resistant varieties and the application of improved field practices.

These advances have been the product of well-organized research programs conducted by groups of devoted seientists em-

[^0]ployed by the beet sugar industry and by Federal and state agencies. The financial support, as well as cooperative assistance, received from the bect sugar industy for our joint research activities has been remarkable. It stands as one of the best examples of governmem and industry woking together toward a common objective.

An early significant accomplishment in sugar-beet breeding was the development of corly-top-resistant varieties that gave new life to the beet sugar industry in most of the districts west of the Rocky Mountains. The havec caused by cunly top in the varieties available in the twenties was an appalling sight. Probably no research assignment appeared more difficult than the control of curly top through breeding of resistant varicties. For this reason, the accomplishments have been most gratifying.

The level of curly-top resistance that has been attained in commercial varieties such as US 92 and its improved releases is remakable and may have given rise to a feeling of unconcern for the disease. Not only is the disease still brought into irrigated districts from rangelands each spring by the leahopper, as in the past, but new and more virulent strains of the virus have been found and other new ones may be expected to occur. These new strains of curly top are capable of causing severe damage to US 22 and other varieties that gave protection in the past. Therefore, research on curly top is still important and must be included in our over-all program of sugar bect research.

Breeding for resistance to leaf spot and black root for the districts east of the Rocky Mountains has resulted in benefits comparable to those derived from curly-top-resistant varieties for the western region. With the introduction of Amerion varieties in the Great Lakes region, the acreable yields of roots have shown a steady increase, and some districts in this region are now well above the national average in productivity.

Sugar beet crops are now thratened by virus yellows or a complex of vixuses that bring about yellowing of toliage and strikingly influence the yield and quality of the sugar beet. No doubt this disease will be a factor of increasing concern in the economy of beet sugar production in this country, as has been true for Europe where the disease has been under investigation since the thirties. Virus yellows was first identified in the Inited States in 1951 from plants collected in Michigan. Since that time, the disease has been found in all major sugar beet districts where surveys have been conducted. The disease has reached epidemic proportions in California and in areas where sugar beets or other susceptible plants are growing most of the year. The damage
depends upon the age of the plants when infected and on the virulence of the strains of the virus involved. Damage appraisal tests conducted in Califomia have indicated reduction in root yields from 2 to 47 percent and in sucrose content ranging up to 3 percentage units.

The immediate relid from damage caused by vinus yellows must come from measures diretted at the vectors or at field practices and ropping systems. The ultimate goal is protection through the development of resistan varieties. Progress has been made in the breeding of basic lines that do not react to the vims by the yellowing of the foliage, while the development of productive varieties that are more tolerant or immone to virus yellous is a goal of the future.

Nematodes have long plagued the sugar-beet producer. As research adrances are made, the complexity of the nematode problem is revealed through a multiplicity of alternate host relationships and an increasing knowledge in the number of different kinds of nematodes. Some empirical control has been obtained with soll fumigans at a high cost, and by more practical control through cropping practices including fallow of crop rotations without alternate hosts. For ultimate control of the sugar beet nematode, the most promising project is breeding for resistance or tolerance by using the wild Beta species. In the meantime, information on the biology of the sugar beet nematode and its relation to alternate hosts, as the tomato, gives some basis for guidance in modified cropping practices until more suitable varieties are developed. Several species of the root-knot nematodes well known in other crops, particularly in Galifomia, contribute to production hazards and most conomical and effient production of sugar beets. Also, gill-forming nematodes, sometimes conlused with the rootknot nematode, add to the complexity in Colorado, Wyoming, Montana, Kansas and Nebraska. These gall-foming nematodes are known to have a definite effect on the efficiency of beet production along with a nematode complex involving root lesion nematodes, spiral nemaudes, and pin nematodes, commonly found in the association with sugar beets. The significance of each will not be clear until the whole biologion relationship an be established with one another and with the crop.

The establishment of a sugar-beet-sed prodution enterprise in the United States was a direct result of the accomplishments of our sugar-beet geneticists and breeders. Various segments of the industry joined fores in this endeavor to insure a dependable
sounce of seed with moximum disease resistance, and agronomic. characteristics suitable to regional environments. This industry has in tum provided a weahh of materal for the plant breeders to continue their work on improving the crop. Our curcent sugar-beet conomy would be quite different today il industry had not provided wise management of seed stocks, maintenance of reserves, and lacilities to permit an orderly and rapid changeover to new varieties.

Hybrid sugar-heet varieties have shown roughly 15 percent increase in yield over the open-pollinated varieties. The discovery of cytoplasmic male sterility in the sugar beet and the utiliation of this character as a tool in the production of hybrid seed have had a measumble intuence on the economy of beet-sugat production. Of special significance is the recent discovery that certain combinations of inbred lines show heterosis for sucrose percentage as well as for root yield. If future combining ability tests with inbred lines should reval the genemal occurrence of this phewomenon in sugar-beetbrecding material, one should be able to push forward with higher root yields and with improved quality through one breeding procedure. Obriously such a development would have a profound effect on the efficiency of beet-sugar production.

One of the most clusive factors that we have to deal with in all crops research is quality of the finished product. This is due to the fact that our agriculture products must meet the requirements and standards of diverse end-use. Sugar beets having only one principal end-use simplity the problem to a degree, bowever, quality is conditioncd by several factors, such as disease, nutrition, environment, and genetic components, No doubt the processor, as well as the grower, has the impression that quality is a temperamental condition that can be upset by many factors, Actually the physiologist must admit that he does not have all the answers. Certainly nutritional and climatic environments are known to be associated with low quality, bot it is also true that these same factors favor disease. Therefore, it is diffoult to separate the causes into their component parts. It has been clearly established that imbalance of nutrients, especially heavy and untimely applications of nitrogen, results in low sucrose percentage without bringing about an increase in root yield. There are several papers on this subjert in the technical sessions that should help in developing the proper fertilizer practices.

The ability to completely mechanize all feld operations in sugar-beet production must be attained in order to insure the
grower of maximum production potential. Monogem varieties of sugar beets that are now avabable or in advanced stages of development for all regions, will have a far-reaching effect on this goal when we leam to use then in proper field practices.

Weeds are among the last remaining obstacles to complete mechandation of many crops, and excellent progress has been made in the development of herbicides for weed control in sugar beets. Complete mochaniation of sugar-beet production an only be accomplished when more effective and selective herbicides become avalable to the sugar beet growers in all areas of production.

Progress in the development of herbicides for weed control in sugar beets through the combined cfort of lederal, state, and sugar company employees bas been most significant during the past decade. Within this period, thehoroncetic acid (TCD): 3,6endoxohexahydrophthalic acid (endothal) ; isoproply N-phenylcarbamate (UP(); 2,2-dichompropionic acid (dalapon); ethyl N, N-di-n-propyltholarbamate (EPMC) ; propyl ethyl n-butylthiolcarbamate (PEBC) ; 4-chlomo-butynyl 8 - (3 -chlorophenyl) carbamate (barban) ; and 2,8-dichlowallyl disopropylthiolcarbamate (DATC.) have been developed for the control of broadleaved weeds and grasses in sugar bects.

Even with all of these advances more effective herbicides for the control of broadleaved weeds in sugar beets are needed. The recent development of preplanting soilimooporated treatments with EPIC and PEBC for the control of both grasses and broadleaved weeds represents a signifiont improvement in chemical methods of controlling weeds in this crop.

Barban and dalapon have proved highly useful for the control of wild oats after they emerge in sugar beets. The development of these tro chemicals lor wild oat control in sugar beets represents a significant accomplishment because TCA, endothal, and other herbicides used as pre-emergence tratments are not effective in controlling wild oats in this crop.

Progress has also been mode in fundamental research on the selective action of herbicides. Basic research on the differential effects of dalapon on sugar beets and weed grasses has yielded valuable information. Fundamental research on the mechanisms of action of herbicides, the basis lor their selective action, the behavior of herbicides in soils, and the effects of envirommental factors on their efficiency has been of great value in the symmesis and development of new herbicicles for weed control in sugar beets. Basic research has also provided guidelmes for more
effective use of herbicides presenty available lor weed control in this cop.

New herbicides are being developed at a rapid rate and each new one must be evaluated to determine its uselulness for weed control in sugar beets. Promising new herbicides, including such additives as surfactants, must be thoroughly evaluated as preplanting soilinoorporated. premergence, and post-emergence treatments, inchuding then behavior in solls, effects on crops grown in the rotation, and the efferts of envirommental factors on their efficiency in controlling weeds without injury to the crop.

The Agricultural Reseach Service has established 16 pioneering research laboratories since 19.7. These laboratories operate on broad charters with the primary objective of exploring the unknown in order to disocer basic principles that will be useful to agriculture in future vears. The Crops Research Division has two such laboratories. One is concerned with plant physiology and the other with plant virology. Actually our research in the physiology laboratory started in 1936 with work on photoperiodism. In 1957, the charter for this group as a Pioneering Laboratory was broadened to cover effect of light on plant growt and development.

Very important advances in our understanding of the physiology of plants have resulted from studies of their responses to light. Flowering and growth responses of plants to different lengths of day indicate an internal regulation for measuring time. The controlling factor is found to be the length of the uninterrupted night. Sugar bects flower when days are long and nights are short. Interruption of the nights by dim incandescent lights to make two short nights out of each long one promotes floweringof beets and other lone day plants. thus showing that duration of darkness, not light, is the controlling factor.

Detaled experiments have shown that red light is more effective in controlling flowering than any other color. The light energy required to induce fowering is extremely low. The effectiveness of light applied in the night results from absorption, and since red light is the most effective in controlling flowering, the responsible pigmen must be blue. The concentration of this pigment is too low for visual detection.

The minimum light energy for a particular response as a function of color or wave length has been identified for flowering of short and long day plants; stem and leal growth; gemination of many seeds: and pigment fommation. Responses to light of different colors, or action spectra, are remarkably similar, sug-
gesting that all of these differen phenomena are regulated by the same receiver in the plant. Maximum effectiveness was at about $650 \mathrm{~m} \mu$, which is in the center of the red region of the spectrum.

Seed germination can be either promoted or inhibited by red light, and the process is reversible. Radiation at 730 mp or far red which is at the visual limit is inhibitory; while that at 650 mp is promotive. The level of germination is independent of the number of alternations between 600 mp , (promotion) and 730 m_{μ}, (inhibition). It is completely dependent upon the wave length of the last radiation given in a series.

Re-examination of the flowering and stem elongation responses previously known proved that they were also reversible by exactly the same wave lengths that control germination of seeds.

These various responses lod to the conclusion that they are all controlled by a single photoreversible reaction and implies that the photoreceptor must undergo reversible changes from one form to another-one form absorbs red lioht (600 mp) and the other farred (730 mp). The length of the night is measured by the change in darkness of the far red to the red absombing form.

Physiological experimentation developed these facts. Now biochemists have isolated phytochrome from 20 or 30 plant species induding sugar beet leaves. The action compound is a protein that denatures at temperatures about $50^{\circ} \mathrm{C}$ when isolated from the leaf and permanently loses its reversibility.

The far red absorbing form of phytochrome is an enzyme, but the reaction it controls in the plant is unknown. That this reaction is a very basic one of plants is shorn by its control of numerous widely different plant responses. Its point of control is evidently a vory primitice one in the reaction sequences that lead to display of these various responses.

This has been a very abbreviated summary of the development of knowledge in this field in the last 10 or 15 years, initiated 40 years ago by Garner and Nlard. A study designed to investigate the light control of fowering led step-by-step to eventual awareness that the controlling mechanism is not peculiar to fowering but is exhibited in innumerable phenomena of plant development. A few decades ago most of us looked upon photoperiodism as a biological curiosity of casual interest but no immediate general concem. Today, we look upon it as a key response of plants to a fundamental reaction that has most diverse and farraching consequences.

Where will these investigations lead in the future? Prediction is unsate. Ten years ago we smely could not have predicted that studies of photoperiodic response of soybans might lead to understanding why tomatoes in a grocery store are often pinkish instead of orange-red, why one should not cultivate after applying a pre-emergence horbicide, or why pieces of green apple skin floating on sugar quickly smell like stored apples in darkness but not in light. These are only a few of the phenomena one finds himself contemplating with at least partial understanding as a result of logical step-hy-step study of the influence of light on flowering.

In our Pioneering Research Laboratory in Plant Virology the study of developmental forms of plant viruses may be possible as a result of recent research findings. An infectious material distinct from tobacco mosaic virus has been isolated from infected tobacco leaves. This infections material an be broken down by the plant enzyme nbonuclease which indiotes that the material is ribomucleic acid (R, A) , the chemical bulding blocks in living cells.

Tobaceo mosaic virus particles are rods consisting of a core of R.N. surrounded by protein. It is believed that during tobacoo mosaic virus multiplication in infected leaves, nucleic acid exists free as an early form of the virus. Until now this free $R M A$ could not be isolated from infected leaves (except by methods which also extract the RXA from complete virus), because the whomuclease in the plant material destroyed the RVA before isolation could be accomplished.

It has been found possible to purify and separate tiruses by a system involving diffusion- filtation through glass columns packed with a buffered suspension of agar gel chips. Spherical vims particles diffuse into the agar chips and paticles of different sizes move down through the column at differm speeds depending upon their diffusion coefficms. Lomg paticles such as those of tobacco mosaic virus, camot nove into the gol and pass through the column quite mpidly. This method is uscful for the separation of very small contaminants from virus suspensions and for the sorting of viruses which differ by as little as 8 or $4 \mathrm{~m}_{\mu}$ in particle diameter. Preliminary work with enoymes and other large protein molecules suogest this method of purification and separation will be extremely useful for the purification and separation of many biolocial components in addition to the virus work for which it is currently being used.

Exberments are under way to purily the curly-top virus of sugat beets and to determinc its size by difusion-hitation. In

February 1906, Dr. Stecre reported at the San Francisco mecting of the American Society of Sugar Bect Technologists, the isolation of an infectious componen from curly-top infected sugar beets which had a particle diameter of 16 mp but was not willing to publish a paper on the infectious particles he isolated, because his final product was unstable and he feared that the $16 \mathrm{~m} \mu$ particles might be a breakdown product of the virus resulting from the purification procedure employed. "The diffusion-fitration procedure is both rapid and extrenely gentle on the virus particles and we expect to have some interesting results with any-top virus in the near future.

Basic rescarch on plant growth regulatom provides a background for more applied research on many of our crops. Some rather recent examples have a direct application or at least contribute toward a better understanding for the development of practices in sugar-beet production or applied research contributing to advances through production research. Three chemicals Ammo 1618, phosphon, and CCC found to retard plant stem growth in our laboratories and later adapted to himited commercial use, have been found to prevent salt damage to soybean plants growing in highly saline sols. Soybean plants growing in pots with a fertilizer application equivalent to $7,800 \mathrm{H}$. prr acre, with plants treated with 38 milligrams of the chemical orowth retardant, grew to maturity and produced viable seed. Intreated plants in this high fertilizer concentration wilted within 24 hours and died within 3 weeks. While this specifu finding cannot be applied directy to sucar beets in a feld practice, it offers a very significant lead which should be investioated for crops like sugar bects often orown on soils of high salinity.

A new antibiotic, phleomycin, previously known to be effective against organisms causing human and livestock diseases, has been found to be effective in preventino or curing rust disease of snap beans under sreenhouse conditions. Our scientists at Beltsville have demonstated that an excentionally low concentration of phleomycin one part of the antibiotic per milion of water sprayed on the leat surfaces, will control bean rust. This lead has opened the way to further experiments to determine the effectiveness of phleomycin against other rusis and against downy mildew and anthracnose diseases.

Another chemical known as P IC (penacridane chloride). developed originally for medical purposes, is promising as a foliar and seed treatment fungicide. In laboratory tests at Beltsville, PAC killed both funoal and bacterial disease organisms carried on seed surfaces and it did not seem to slow seed germ-
imation. It has been applied to seeds as a soak, dip, or spray with equal success, and is bound to the surlace even better than some chemicals accepted for commercial seed treaments. Even repeated washings of treated tomato seeds left enough of the PAC on the sumace to prevent the growth of bacteria. The material may have an added advantage for practical use in its apparent absence of toxic properties to humans and animals. This development for a new use of a chemical to control seed-borne diseases is promising for any cop propagated by seed, and should not be overlooked for its possibilities in sugar-beet disease control.

In another area of work, our Federal-State scientists have recenty found concrete evidence of substances in plants that make them physiologically resistant or susceptible to discase. A protein of the globulin type found in a particular race of fax rust fungus, was lound to ocur also in flax plants susceptible to the same race of the fungus. Plants resistant to the particular race do not contain the protein. This discovery is a basic one in plant science, and may prove especially important to plant breeders searching for disease-resistant plant materials. In principle, it offers a new tool to our scientists for almost all crops including sugar beets. This principle of physiological disease resistance in plants serves as an example of the results and need for the close working relationship between our scientists in the different disciplines-specifically the geneticists and physiologists in this case. Here specific information on the globulins from each of four lines of flax and four races of rust of the fungus Melampora linii were used in serological analysis, which tests show a clear basic relationship between susceptibility to particular lungus races and plant arieties, thereby opening the door to a new approach in disease control.

These are only a fow examples of our current research program. II time permitted I would like to tell you about our work on the Biological Control of Root Disease where we are attempting to develop "bugs to fight bugs"; of our work on translocation of large molecules from leaves to roots; of our plant exploration work to provide new germ plasmetc.

This year we are commemorating the 100 th Anniversary of the $[\because S$. Department of Agriculture and the approval of the Morril Act, which created the national system of land-grant universities and colleges. In all of these institutions and in the L. S. Deparment of Agriculture, dedicated scientists have prorided the knowledge that has enabled Amerion agriculture to be the most productive that the World has ever known. We must
keep our research program strong to insure a constant fow of new knowledge that will be required in the future. Continued progress demands dynamic action. The graduate students of today must be convinced that Biological sciences have as many challenges and rewards as the Physical sciences, otherwise the next generation. will not have the tramed manpower to cope with problems ahead. The general public should be better informed as to our aims and objectives in agricultural research. We should never take our minds from the primary objective - to provide the most wholesome food supply in the most efficient and economical manner possible.

[^0]: ${ }^{1}$ Director Crops Researh Division. Agriculnal Resemeh Serice, U. S. Depanmemt of of Agriculture, Warlington, D.C. at the Twellh Gencral Mecting. Amencan ooctery of Sugar Beet Technobests. Denver, Colorale, February 7. 1962.

