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Introduction

The estimation of general combining ability (GCA) when
the crossing system is incomplete is a very difficult computational
procedure without the use of a computer. The crossing system
i1s usually such that a certain group of good or proven parents
occurs more frequently than do unproven or new parents re-
sulting in a greatly unbalanced array. To obtain estimates and
confidence intervals for the GCA’s, the crossing array is con-
sidered as an unbalanced two-way classification model in which
male parents or pollinators are columns and female parents are
rows. An exact analysis of the crossing system is obtained by
solving the normal equations for the model by a matrix inversion
techmque from Graybill* which provides the analysis of vari-
ance, GCA estimates, confidence intervals for individual GCA’s,
and confidence intervals on the difference between GCA’s for
every pair of females and males. The confidence intervals pro-
vided LSD type inference procedures. All of the computations
are easily obtained using a computer program.

The Crossing System

The complete diallel crossing system results from all possible
crosses between lines where each is used as a male and as a
female. In using male-sterile lines as female parents in a hybrid
sugar beet program, it was of interest only to cross chosen male-
sterile lines with a set of pollinators; thus reciprocal crosses were
not considered. The crossing system used was a rectangular ar-
ray consisting of a corner ol a complete diallel crossing system
with no diagonal elements included, as shown in Figure 1.

At the Great Western Agricultural Experiment Station, we
were interested in evaluating a large number of parental lines.
The data from the many crosses which occur in several experi-
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Figure 1.—Full diallel crossing system with shaded area showing the part
of the crossing system studied.

ments at one location were combined to estimate the general
combining abilities. All crosses did not occur in the same ex-
periment, and to ¢liminate as much between experiment varia-
tion as possible, a common check variety was included in each
experiment. The characteristics studied for each cross within
an experiment was expressed as the percentage of the correspond-
ing characteristics of the check variety in the experiment. The
percentages from crosses occurring in several experiments were
included in the crossing system, often resulting in 50 or more
pollinators and 50 or more female lines. A complete crossing
system would require 2500 or more crosses which is usually im-
possible to obtain. It has been found that a fraction of the
possible crosses can provide reliable estimates of the GCA's. As
a rule of thumb, at least 109, of all possible crosses should be in-
cluded for meaningful results and a larger percentage of the
possible crosses must be included as the number of pollinators
and female lines included in the study decrease.

For example, an experiment with 5 pollinators and 5 female
lines requires at least 10 crosses before the system can be analyzed
(limitation on degrees of freedom) and more than 15 crosses are
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desirable (to obtain sufficient degrees of freedom to estimate
€rTor).

As a final restriction on the crossing system, the crosses must
form a connected block-treatment array, as defined in Gray-
bill (1961), in which female lines are considered as blocks and
pollinators are treatments.

The Analysis
A particular cross can be included in the system more than
once, thus, as shown in Figure 2a, the array of data considered
was the sums for crosses and marginal sums for each pollinator
and female line. Figure 2b shows a 5x5 crossing system, the data
being recoverable sugar yields from a 1967 experiment. Here
each cross was observed once or not at all.
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Figure 2a.—Incomplete crossing systems with cell totals and marginal totals.
The dot notation denotes the particular subscript has been summed over.

POLLINATORS

5 1 2 3 4 5 SuUM
E 1 124.2 128.0 108.0 360.2
M 2 112.9 | 1156 107.9 336.4
A 3 112.6 129.2 93.1 334.9
]15- 4 122.6 133.6 | 1426 398.8 |
S 5 1184 | 121.6 133.9 107.5 481.4

SUM 590.7 498.8 | 4057 93.1 3234 | 19117

Figure 2b.—Array showing observed data and marginal totals.
The model used to analyze the crossing system is
(D yﬂk=“+ﬁi+7'+eijk
i=1,..b;1=1, t;k=0,l,mnij;
where u is the general mean, f; is the GCA of the ith female line, T

is the GCA of the jth pollinator andnij may be any finite integer,
0,1,2,... . Figure 3a contains the array of nij“‘

t b
where n..= } n.:n.=% n.; and n. E Z n..
L= I =S =1j=1 W
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Figure 3a.—Incomplete crossing system with the number of observations
for each cross and the totals for each female and pollinator.

POLLINATORS
) 1| 2 3 4 5 SUM
E 1 1 | 1 0 0 1 3
M 2 1 1 0 0 1 3
A 3 1 0 1 1 0 3
L a 1 1 1 0 [ o 3
E ]
S 5 [ 1 1 ] 1 0 _ 1 f a |
sum [ s 4 | 73 [ 3 [ 16 |

Figure 3b.—Array of the number of times each cross was observed with
female and pollinator totals.

The nj; values for the example are included in Figure 3b.
[he normal equations for the model in (1) are

. fi+In B ATn. T = y...
Mono Zf'lﬁi Zj:njrj y
') - o + A Z i — —
(2) ﬁr. n.u nr,,(:’r +jnrj7j =Yy 1=1,...,b

N N A
5 +n. b = =
T Mgl Einlsﬁl"'n's?s Vig: &1yt

Ay

where
denotes the estimator. The parameters we want to estimate
are the effects of the pollinators and the female lines. Since
the crossing system is incomplete, i. e., each pollinator does not
occur with each female line, the desired estimates of the pollina-
tors’ general combining abilities are those adjusted for the fe-
male lines with which they were crossed. For example, suppose
a particular pollinator occurs only with inferior female lines.
The unadjusted mean or average of the pollinator is not neces-
sarly a measure of the pollinator’s effect on the population of
female lines. The pollinator mean is thus adjusted as to indicate
the possible GCA if the pollinator had been crossed with all the
female lines. This adjustment is accomplished as the normal
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equations are solved. To obtain estimators of the GCA’s for
female lines adjusted for the pollinators with which they were
crossed and the GCA’s for pollinators adjusted for the female
lines with which they were crossed, the normal equations were
reduced to two sets of equations, a set containing only the B;
parameters and a set containing only the r. parameters.

To estimate the r, parameters, compute the quantities

- .
(3) s _iél W Vi 51t
where ¥ = %i'_' and compute the elements of the matrix

i
A =((a,)) where

b n® b n..n
= B is = _ < Mis"ir
(4) 8= Ny izl f. and a igl e s,

Figures 4 and 5 are respectively the q vector and the A matrix for
the example AEstlmates of the GCA’s for pollmators are the solu-
tions for the 7_vector from the system of equations AT = q.

4y 13.3167 § _
q =|a3 | = 40.7833 Q=Yg L MY

ay -18.5333 i=1

g —-29.1500

Figure 4.—The computed g vector for GCA estimates of pollinators ad-
Jjusted for females.

3.4167 -1.2500 -0.9167 -0.3333 -0.9167
-1.2500 2.7500 -0.5833 0.0000 -0.9167

A =] -09167 -0.5833 2.0833 -0.3333 -0.2500
- 03333 0.0000 -0.3333 0.6667 0.0000
-0.9167 -09167 -0.2500 0.0000 2.0833

i b n..n.
a.=n .-y —2 a.=-}% f_lr
1! =l i

Figure 5.—The computed A matrix for GCA estimates of pollinators ad-
justed for females.

To estimate the g, parameters, compute the quantities

t
(5) PI=YI‘-~j§lnrjy.j. r=1,....b
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and compute the elements of the matrix B = ((b,¢)) where

(6) b =1 _JZI n—J— and
L ngng
brs:“}: T s,

=y

Figures 6 and 7 are, respectively, the p vector and the B matrix for
the example.AEstimates of the GCA’s for female ]ineE are the solu-
tions for the § vector from the system of equations Bf = p.

Py 9.5600
92 -14.2400 5 _

p=|py| = |~-11.5733 P.=Yy.- % ny.
pﬁ 20.7267 ror o Er
Ps ~4.4733

Figure 6.—The computed p vector for GCA estimates of females adjusted
for pollinators.

2.2167 -0.7833 -0.2000 -0.4500 -0.7833
-0.7833 2.2167 -0.2000 -0.4500 -0.7833

B = | -0.2000 -0.2000 1.4667 -0.5333 -0.5333
-0.4500 -0.4500 -0.5333 2.2167 -0.7833
-0.7833 -0.7833 -0.5333 -0.7833 2.8833

5 n%.. 5 n.n_
b =, ~ L 1 By _Z ;] s

Figure 7.—The computed B matrix for GCA estimates of females adjusted
for pollinators.

In the above systems of equations the A and B matrices are
singular and thus the inverses do not exist; therefore,” to obtain
and add % to each element of B to generate a B* matrix. The in-
verses of A* and B* exist and can be computed using any matrix
inversion technique. Next, obtain a matrix A* by subtracting "ti'
from each element of (A*)! and a matrix B by subtracting —é
from each element of (B*)*. Figure 8 shows the A*, (A*)*' and
A" matrics and Figure 9 shows the B*, (B*)*, and B matrics for
the 5x5 example. The estimates of the GCA’s for pollinators are
'r A q and the estimates of the GCA’s for the female lines are

_ﬁ_ B _p_!‘ These computations provide solutions which satisfy the



270 JournaL oF THE A. 8. S B. T,

.. b t . ,
the restriction p g,=0 and § 7= 0. Estimates of the GCA’s for the
i=1 =1

example are in Figure 10.

3.6167 ~1.0500 -0.7167 ~0.1333 —0,71677
~1.0500 2.9500 -0.3833 0.2000 -0.7167
A* = 1 -07167 ~—0.3833 2.2833 -0.1333 ~0.0500
~-{.1333 0.2000 -0.1333 0.8667 0.2000
-0.7167 -0.7176 ~0.0500 0.2000 2.2833

0.4141] 0.2195 0.1708 ~-0.0076 0.2032
0.2195 0.5029 0.1519  ~0.1143 0.2401
(A*)7'= 0.1708 0.1519 0.5222 0.0465 0.1086
-0.0076 ~0.1143 0.0465 1.2195 -0.144]

0.2032 0.2401 0.1086  -0.144] 0.5921

0.2141 0.0195 -0.0292 -0.2076 0.0032
0.0195 0.3029 -0.0481 ~0.3143 0.0401
A+ -G.0292 ~0.0481 0.3222  -0.1535 -0.0914

~0.2076 -0.3143 -0.1535 1.0195 -0.3441
0.0032 0.0401 -0.0914 -0.3441 0.3921

Figure 8.—The computed A*, (A*)™}, and A" matrices for estimating the
GCA of the pollinators adjusted for females.

24167 -0.5833 0.0000 -0.2500 -0.5833
~{.5833 2.4167 0.0000 -0.2500 ~0.5833
B* = 0.0000 0.0000 1.6667 -0.3333  -0.3333
~0,2500 -0.2500 -0.3333 24167  -0.5833
-0.5823 -0.5833 ~0.3333 05833 3.0833

=
0.5045  0.1712  0.0541 0.1149  0.1:554
0.1712 05045  0.0541  0.1149  0.1554
(B")7'= | 0.0541 0.0541 0.6487  0.1224  0.1149
0.1149  0.1149  0.1284 04915  0.1503
0.1554  0.1554  0.1149  0.1503  0.4240
r =
0.3045 -0.0288 -0.1459 ~0.0851 ~0.0446
~0.0288  0.3045 -0.1459 -0.0851 -0.0446
Bt = | -0.1459 -0.1459  0.4487 -0.0716 -0.0851

~0.0851 -0.0851 -0.0716 02915 -0.0497
~0.0446 -0.0446 ~0.0851 ~0.0497  0.2240

Figure 9.—The computed B*, {(B*)™, and j}_‘i matrices for estimating the
GCA of the females adjusted for the pollinators.
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Table 1.—Analysis of variance.

D :
eerees of | Sums of squares sﬁlﬁg?e F Ratio

Pollinators GCA | t-1=4 T.0:= 1394.8228 | 348.706 | 35.328
ADIJ for females z i9 8

Female GCA ADJ p_| = B, = P
Por patitatass b-1=4 Eﬁlpl 320.8448 80.2112 8.126

Source

2
2 i o
Zyj,jk 0 T ijqj

Zy? A
ERROR nboth] ok L8
= 69.0939 9.8706

The analysis of variance table (Table 1) can now be constructed
by computing the sum of squares due to pollinator GCA’s adjusted
for-female lines, the sum of squares due to female line GCA’s ad-
justed for pollinators and the sum of squares due to error.

The ratios of the mean square due to pollinator GCA’s to mean
square error and of the mean square due to female line GCA’s to
the mean square error provided tests of the hypotheses that the
pollinators’ GCA’s are equal and that the female line GCA’s are
equal. The ratios for the example are in Table 1 indicating that the
hypotheses are both false.

1.448 3.446

" 6.604 i -4.488
r=A%q = | 18194 B=B%p = | -5.613
~17.979 7.492

~8.266 -0.837

Figure 10.—Estimates of the GCA for pollinators (7) and for females (§3).

If the hypotheses seem to be false, as for the example, the next
step is to determine the superior lines. This can be acconiplished in
two ways, (1) compute confidence intervals for each u + 7; and
u + B;, or (2) compute confidence intervals for each difference

Ty =T and B - Bj. The (1-a) 100% confidence interval on u + Tj i8

AA —_— AA pa—
(7 w+ Tj - taﬂ(m} A/EMS \A‘:JS u+ Lf < M+ (7 + taﬁ(m) VEMS \A‘}-j

where a+jj is the jth diagonal element of the A™ matrix and
m = n..-b-t+1. The (1-a) 100% confidence interval on u + g; is

(8)  H+B -ty p(m)VEMS VohSu+gSus B+ ta lm) VERS VY

where b+ii is the ith diagonal element of theg+ matrix. Theﬁ + 7]
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are the adjusted means for pollinators and the p + ;3+i are the ad-
justed means for female lines. The variances of the adjusted means
are EMSanEj for pollinators and EMSxb";; for female lines. Table 2
shows means, variances, and 95% confidence intervals for the pol-
linator means (u+7.) and female line means (u + B) of the example.
A simultaneous inf’erence procedure is to say two GCA's are dif-
ferent if the confidence intervals about their means do not overlap.

Table 2.—The computed adjusted means, variances of the adjusted means,
and 95% confidence intervals on the u + Tj and i + ﬁi.

POLLINATORS UNADJ MEAN ADJ MEAN VARIANCE LOWCI UPPER CI

1 118.140 118.088 2.113 117.49 124.37
2 124.700 123.245 2.990 121.99 130.17
3 135.223 134.834 3.180 133.46 141.89
4 93.100 98.661 10.003 94.00 109.00
S 107.800 108.374 3.870 106.56 115.87
FEMALLES UNADJ MEAN ADJMEAN VARIANCE LOWCI UPPERCI
1 120.067 122.875 3.006 118.83 127.03
2 112,133 114.942 3.006 110.89 119.09
3 111.633 113.836 4.428 108.89 118.84
4 132.933 126.922 2.878 122.96 130.98
5 120.350 118.592 2.211 115.13 122.16

The second procedure is to compute confidence intervals on
the differences 7; - 7; and f; - ;. The variance of the difference
M Ao
Ti - Tj 1S

c. =(at. +at + 22T % E + ot
1 e ] i o S
(9) ij ji T 2a3)x EMS, where a7j; are elements of A
. i S A A
The variance of the difference g; - Bj is
(10) dj; = (b'{i + b'J?'j + ZbB)x EMS, where the b+-u-are elements of B

A (1-a) 100% confidence interval for r; - Tj 1s

(A1) 7=7 = tgpm) Ve St - 7 S7y- T, + tgp(m) \/cu—

and a (1-a) 100% confidence interval for g; - §; is

(1 2) Bi. _Ej o ta‘,r"::(m) \"dij SIG1 _ﬁj S%l _BI + tal;g(m)\/d_i}j

The simultaneous inference procedure is to say two GCA’s are dif-
ferent if the confidence interval on their difference does not con-
tain zero. '

The second procedure produces somewhat shorter confidence
intervals, thus enabling more differences to be directed. This is
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seen by comparing the confidence intervais on the differences in
Table 3 where one additional difference is shown over that by
comparing overlapping confidence intervals in Table 2.

Table 3.-Estimates and 95% confidence intervals on the difference of
pollinators and females.

POLLINATORS
DIFFERENCE ESTIMATE OF LOWER CI UPPER CI
DIFFERENCE
Ty~ Ty ~5.156 ~10.282 ~0.030
Ty~ 73 ~16.746 ~22.463 ~11.029
Ty~ T4 19.427 9.907 28.947
71— Ts 9.714 3.972 15.456
Ty— T3 ~11.590 ~17.887 ~5,293
Ty~ T4 24.583 14.227 34.939
Ty~ Tg 14.570 9.056 20.684
Ty~ Ty 36.173 26.653 45.693
Ty~ Tg 26.460 19.439 33.481
Tq = Tg -5.713 ~20.456 1.030
FEMALES
DIFFERENCE ESTIMATE OF LOWER CI UPPER CI
DIFFERENCE

8~ 8, 7.934 1.880 13.988
B8 9.059 1.483 16.635
By ~Ba -4.046 -10.537 2.445
By -Bs 4.283 -1.330 9.896
B,-83 1.125 ~6.451 8.701
Br-84 ~11.980 —18.471 ~5.489
8,85 ~3.651 ~9.264 1.962
B3~ B4 ~13.105 ~22.036 ~8.098
81— 85 ~4.776 ~11.583 2.031
8485 8.329 2.515 14.143

The above procedure is computationally difficult for a desk
calculator, but it can be programmed for operation on a high speed
computer. Programs are now available for the CDC 6400 and the
360/50 IBM computer systems. The computer programs solve the
normal equations for the values of §;, and T, compute the entries
for the analysis of variance table, and compute the confidence
intervals about the parameters g + T and p + ;. The program does
not compute confidence intervals about the differences g; - By and
7i - 7; as the required number of pages of output becomes large.

The procedure described is not restricted to sugar beet data;
the example is included only to demonstrate the procedure. The

procedure can be used for any experimental situation produc-
ing an incomplete crossing system as described above. Still
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further, the procedure can be used to analyze any set of data
from a two-way design without interaction.

Summary

A computational procedure is presented to estimate the
general combining abilities (GCA) of the parents of an incom-
plete crossing system. The procedure also provides the analysis
of variance table from which we can test the hypotheses; 1) no
difference between the female line GCA’s and 2) no difference
between the pollinator GCA’s. Confidence intervals can be con-
structed about the individual pollinator and femalce line means
and about the difference of two GCA’s. The confidence inter-
vals are used as a LSD type inference procedure. Besides present-
ing the computational procedures, an example is discussed in
detail to demonstrate the necessary calculations. A computer
program is available for doing the described analysis,
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