Irrigating with Sugarbeet Processing Wastewater* J. H. SMITH AND C. W. HAYDEN #### Received for publication March 24, 1980 #### INTRODUCTION In recent years, irrigating agricultural land with wastewater has become a major wastewater management practice. Irrigation has replaced much of the discharge to streams and conventional primary and secondary waste treatment for food processing wastewater (4, 11, 12, 13). Irrigating agricultural land for treatment and disposal of the food processing wastewater is a good practice if the wastewater does not contain toxic constituents. Crops grown on the land remove part of the plant nutrients supplied by the wastewater and can be fed to livestock (1, 2). Considerable information has been published about wastewater irrigation in recent years and several food processing wastewaters have been evaluated for irrigation use (5, 6, 17, 18, 19). These systems work well, oxygen demand and the chemical constituents, except potassium, were satisfactorily removed at moderate applications, as wastewater passed through the soil, and using wastewater for irrigation can economically benefit users. Nutrient concentrations in wastewaters, and in some cases feasibility for irrigation use, have been evaluated for several food processing wastewaters: cannery wastes (8, 16), citrus wastes (10), vegetable wastes (14, 21, 22, 23), fruit processing wastes (15, 21, 22, 25), and grain wastes (22). For the most part these wastewaters can be used for irrigating agricultural land with a minimum of problems. ^{*}Contribution from the USDA-SEA. The authors are Soil Scientist and Biological Technician, Snake River Conservation Research Center, Kimberly, Idaho 83341. VOL. 20, NO. 5, APRIL 1980 Sugarbeet processors discharge large volumes of wastewater containing relatively low concentrations of organic matter, suspended solids, and various inorganic nutrients. As a result, large amounts of nitrogen and organic matter can be applied to the fields. The objectives of this paper are to 1) summarize data for flood irrigation with sugarbeet processing wastewater, 2) evaluate soil loading with nutrients and organic matter, 3) examine water cleanup through soil filtration and microbiological activity, 4) observe some aspects of nutrient utilization, 5) consider salinity and specific ions in the soil, and 6) discuss feasibility of continued irrigation with sugarbeet processing wastewater. ## METHODS AND MATERIALS This study was conducted at Amalgamated Sugar Company plants located at Twin Falls, Rupert, and Nampa, Idaho where wastewater is being used to irrigate cropped fields. The wastewater irrigation fields were designed and prepared for wastewater irrigation by grading to rigid specifications for surface irrigation and diking the fields to prevent runoff. The fields seeded to an orchard grass (Dactylis glomerata) and alfalfa (Medicago sativa) mixture were harvested for hay during the summer growing season. Wastewater was sampled at each sugarbeet processing plant twice weekly during the sugarbeet processing season, which began in October and ran for 100 or more days. An automatic sampler delivered wastewater into a freezer at designated intervals, where it was frozen in a plastic container and stored until analyzed (7). At the Nampa plant, a water meter was installed that actuated the sampler at preset water volumes, sampling the wastewater in proportion to the volume passing through the meter. Wastewater irrigations were scheduled at 1, 2, and 4 week intervals at the Twin Falls and Rupert sites and at 2 and 4 week intervals at the Nampa site. The weekly irrigations were stopped in January because the plots were severely overloaded. Soil water was sampled after each irrigation, using 3.8-cm-diameter poly-vinyl-chloride sampling tubes with porous ceramic cups cemented to one end. Duplicate sets of sampling tubes were inserted vertically into the soil to depths of 15, 30, 60, 90, 120, and 150 cm at each sampling site. When taking samples approximately 0.7 bar suction was applied to the tubes for about 48 hours. The extracted water was pumped into a suction flask, transferred to a plastic bottle, and refrigerated in the laboratory until analyzed. Not every tube yielded a water sample at every sampling. The water samples were analyzed for COD (3) and nitratenitrogen was determined with a nitrate-specific ion elec-Total nitrogen was determined by a Kjeldahl procedure, modified by substitution of copper for the mercury catalyst (3). Total phosphorus was determined by persulfate oxidation (24) and potassium, by flame photometry. Water applications to the fields were measured by the field operators using water meters. Processing plant waste effluents, water samples extracted with extraction tubes, and saturated soil extracts were also analyzed for sodium by flame photometry; calcium and magnesium by atomic absorption spectrometry; chloride, by silver titration; sulfate, by precipitation as barium sulfate and measurement on a spectrophotometer; total dissolved salts, by electrical conductivity, and pH. Soils, sampled annually were analyzed for the above constituents and for total organic matter by wet digestion. The first samples were analyzed for cation exchange capacity (CEC) and particle size distribution from each sampling depth. soil classification at the Twin Falls sites was silt loam from the surface to 150 cm depth. At Rupert the soils were sandy loams to loams, and at Nampa the soils were clay loams to loams in the surface and sandy loams to loams at 150 cm depth. For complete soil analyses see Smith and Hayden (20). Plant samples were taken in the fields periodically and analyzed for total nitrogen by a Kjeldahl procedure and for nitrate, phosphorus, and potassium. ## RESULTS AND DISCUSSION Wastewater applications at the fields were at planned rates of 10 cm per irrigation and initially scheduled at 1 (A), 2 (B), or 4 (C) week intervals. Irrigations as applied by the treatment field operators to dispose of the wastewater were designated (D). After the first irrigation season, we determined that the weekly irrigation schedule was excessive, and therefore this treatment was terminated and these plots were then irrigated according to schedule (D). Some wastewater irrigations at various schedules shown in Table 1 had applications ranging from 28 to 169 cm per sugarbeet processing season. For a complete listing of all wastewater irrigations see Smith and Hayden (20). The COD, nitrogen, phosphorus, and potassium applications in the same selected treatments reported for wastewater application are shown in Table 1. The weekly wastewater applications applied excessive amounts of COD, nitrogen, and potassium. The 140 metric tons of COD applied the first year at the Twin Falls site and the 61 tons at Rupert both damaged the vegetation because of anaerobic conditions associated with the high water and organic additions and the large amounts of nitrogen would be expected to pollute the soil and groundwater. Most other application rates were within an acceptable range and could be managed to utilize much of the added nutrients by cropping and removing the crops for utilization elsewhere. Phosphorus applications in most treatments except the weekly irrigations were lower than the annual phosphorus removal by crops. Soil tests need to be run occasionally to monitor phosphorus in the soil. Occasional phosphorus fertilization may be necessary to supplement wastewater applied phosphorus to maintain optimum fertility for growing hay crops. Table 1. Annual wastewater, chemical oxygen demand (COD), nitrogen, phosphorus, and potassium applied to fields irrigated with sugarbeet processing wastewater. | Location | water | COD | Nitrogen | Phosphorus | Potassium | |--------------|---------|---------|----------|------------|-----------| | (Irrigation | applied | | | | | | schedule) | cm | Tons/ha | | — kg/ha — | | | Twin Falls | | | | | | | (A) a weekly | 155 | 139.5 | 4200 | 34 | 2820 | | (B) 2 weeks | 87 | 46.6 | 1582 | 13 | 1005 | | (C), 4 weeks | 48 | 22.3 | 860 | 7 | 630 | | (D) b 76-77 | 42 | 17.1 | 555 | 14 | 1095 | | (D) 77-78 | 169 | 46.9 | 1425 | 13 | 3405 | | Rupert | | | | | | | (A) weekly | 109 | 60.6 | 1150 | 16 | 430 | | (B) 2 weeks | 48 | 28.0 | 570 | 8 | 195 | | (C) 4 weeks | 28 | 15.1 | 335 | 5 | 130 | | (D) 76-77 | 50 | 10.0 | 335 | 11 | 510 | | (D) 77-78 | 28 | 8.1 | 370 | 13 | 490 | | Nampa | | | | | | | (D) 76-77 | 116 | 10.4 | 277 | 15 | 3080 | | (D) 77-78 | 114 | 9.7 | 383 | 16 | 3410 | $^{^{\}mathrm{a}}$ 1975-1976 Processing season. Potassium applications to the wastewater irrigation fields were mostly high to very high (Table 1). No potassium deficiencies would be expected in the crops grown on the treated fields. Also no problems should develop because potassium leaching equilibrium would be reached in a few irrigation seasons and the soil potassium concentrations should remain relatively constant. COD concentrations in the wastewater varied widely with time and locations. At the Twin Falls and Nampa plants the wastewater was stored for a short time in ponds before being pumped to the fields. The storage ponds buffered changes in the COD concentration by mixing a large volume of plant effluents. Concentrated Steffen waste spilled into the Twin Falls pond early in the season. This raised the pond COD concentration to 8,000 b Represents average applications to entire field during processing season. į mg COD/ liter. Before the high COD concentration was diluted by the lower concentration wastewater, large amounts of COD and other constituents were applied to the land. COD ranged from 2,000 to 8,200 mg/liter and the average in the Twin Falls wastewater for the second and third processing seasons was approximately 3,300 mg/liter. At the Rupert field, COD ranged from 1,500 to 5,300 and averaged 3,300 mg/liter for the three processing seasons. COD concentrations at the Nampa plant ranged from 345 to 2,000 and averaged 1,100 mg/liter for two processing seasons. COD analyses for wastewater and for water samples extracted from the 150 cm depth in the fields are summarized in Table 2. At the Twin Falls wastewater irrigation fields, an average of 48% reduction was found for the three processing seasons for the 4-week irrigation schedule. At the Rupert fields, the wastewater COD averaged 3,450 and the soil water COD averaged 550 mg/liter for an 84% average reduction for three years. At the Nampa fields the wastewater averaged 1,050 and the soil water 268 mg/liter for a 75% average COD reduction. The highest soil water COD concentrations were observed during the processing seasons and the lowest in the The fields were irrigated in the summer with canal water having almost no COD. Soil water analyses during the summers taken from the 150 cm depth averaged 98, 98, and 88% COD reduction from the average wastewater COD concentrations during the processing season at the Twin Falls, Rupert, and Nampa plants respectively. COD cycle resulted from a decreased COD application following the processing season and biological decomposition of the added organic materials in the soil as well as leaching of the added organic materials. In some of the wastewater irrigation fields, the soil is deeper than 150 cm and the organic material cleanup by filtration and biological activity will continue as the water infiltrates deeper into the soil profile. This should ultimately produce a clean effluent. Table 2. Chemical Oxygen Demand (COD) in sugarbeet processing wastewater, and in water extracted from 150 cm deep in the wastewater irrigation fields. | Location | Soil | | m i | lligr | ome n | er li | tor | | | | | |-------------|------|------|------|-------|-------|-------|------|------|-------|--------|------| | (Irrigation | | | 1975 | 61 | 1970 | | CCI | | | | | | schedule) a | cm | 0ct | Nov | Dec | Jan | Feb | Mar | Apr | May . | June . | July | | Twin Falls | 0 | 20 | 8215 | 5795 | 5200 | 5970 | 3275 | 2920 | 20 | 20 | 20 | | (A) | 150 | 55 | 2040 | 4825 | 4200 | 4030 | 2795 | 1655 | 1380 | 1560 | 1375 | | (B) | 150 | 30 | 45 | 3865 | 3580 | | 2840 | 1710 | | 1145 | 1050 | | (C) | 150 | 75 | 2005 | 4620 | 3710 | - | 1945 | 1695 | _ | 495 | 70 | | | | 197 | 5 | 197 | | | | | | 19 | 78 | | | | Nov | Dec | Jan | Feb | | July | | Dec | | July | | | 0 | 2955 | 4850 | 3830 | 3600 | 1995 | 20 | 3070 | 2915 | 20 | 20 | | (A) | 150 | 1090 | 585 | 230 | 305 | 1030 | 130 | - | 605 | 610 | 185 | | (B) | 150 | | 2195 | | 1975 | 1590 | 125 | 1160 | - | 400 | 85 | | (C) | 150 | 2150 | 3565 | 2520 | 1730 | 1540 | 80 | 1525 | 1430 | 360 | 115 | | | | | 1975 | | 1976 | | | | | | | | | | Oct | Nov | Dec | Jan | Feb | Apr | Aug | 0ct | Nov | Dec | | Rupert | 0 | 5050 | 6295 | 5240 | 4523 | 6010 | 20 | 15 | 2595 | 1995 | 1530 | | (A) | 150 | 50 | 215 | 360 | 840 | 845 | 255 | 100 | 300 | 1010 | 1410 | | (B) | 150 | 270 | 615 | 620 | 690 | _ | 345 | 55 | 215 | 2425 | 840 | | (c) | 150 | 35 | 50 | 80 | 65 | _ | 60 | 50 | | 2155 | 1085 | | | | | 1977 | | | | | 1978 | 3 | | | | | | Jan | Apr | July | Sep | Oct | Dec | May | July | | | | | 0 | 1915 | 30 | 20 | 20 | _ | 2935 | 540 | 25 | | | | (A) | 150 | - | 75 | 45 | 20 | *** | _ | 125 | 105 | | | | (B) | 150 | 245 | 85 | 45 | 40 | 640 | 610 | 240 | 95 | | | | (C) | 150 | 590 | 160 | 50 | 40 | 620 | 585 | 120 | 125 | | | | | | 1976 | | | 1977 | | | | | | | | | | 0ct | Nov | Dec | Jan | Mar | July | Nov | Dec | Mar | May | | Nampa | 0 | 1230 | 1990 | 1845 | 2310 | 625 | 15 | 1215 | 1110 | 636 | 853 | | (B) | 150 | 20 | 40 | 55 | 665 | 405 | 45 | 70 | 195 | 90 | 135 | | (C) | 150 | 615 | 375 | 990 | 335 | 300 | 120 | 90 | 75 | 190 | 90 | | (0) | 100 | 013 | 313 | 220 | 200 | 500 | 120 | 70 | 13 | 170 | 20 | a See text for irrigation schedules. Nitrogen concentrations in wastewater and in water extracted from the 150 cm depth in the wastewater irrigation fields are reported in Table 3. High total nitrogen was found in the wastewater samples from the Twin Falls plant that corresponded to high COD concentrations early in the project. The average total N for the first season was 210 and for three seasons was 132 mg/liter. The average total N remaining in the water extracted from the 150 cm depth was 4 mg/liter which represented a 97% decrease with passage through 150 cm of soil. Average Table 3. Total Nitrogen in sugarbeet processing wastewater and in water extracted from 150 cm deep in wastewater irrigation fields | Location | Soil | | | ligra | ams p | | ter | | | | | |-------------|------|------|------|-------|---------|------|------|--------|-----|-------|-----| | (Irrigation | | | 1975 | | 1976 | | | - | 243 | I I I | | | schedule) | cm | Oct | Nov | Dec | Jan | Mar | Apr | May | | July | Nov | | Twin Falls | 0 | - | 682 | 202 | 134 | 72 | 44 | 1 | 1 | 1 | 93 | | (A) | 150 | 1.6 | 48 | 172 | 146 | 64 | - | 97 | 89 | 2 | 42 | | (B) | 150 | 1.4 | 2 | 90 | 72 | 57 | 32 | | 8 | 3 | 7 | | (C) | 150 | 1.6 | 76 | 131 | 64 | 82 | 52 | - | 6 | 4 | 4 | | | | | 1977 | | | | | | | | | | | | Dec | Jan | Feb | Mar | June | July | Sep | Nov | Dec | | | | 0 | 148 | 120 | 90 | 53 | 1 | 2 | 0 | 83 | 99 | | | (A) | 150 | 69 | - | - | 4 | 7 | 5 | 5 | - | 12 | | | (B) | 150 | 6 | - | - | 2.01400 | 10- | 7 | 1374 | - | 1172 | | | (C) | 150 | 2008 | 22 | 15 | 15 | 100 | - | to the | 30 | 50 | | | | | 19 | 975 | | 1976 | | | | | | | | | | Oct | Nov | Dec | Jan | Feb | Apr | June | Aug | Oct | Nov | | Rupert | 0 | 1 | 136 | 84 | 84 | 55 | 2 | 1 | 1 | 79 | 60 | | (A) | 150 | 2 | 2 | 2 | 2 | 2 | 5 | 3 | 4 | 2 | 2 | | (B) | 150 | 3 | 2 2 | 3 | 3 | - | 4 | 2 | 3 | 2 | 2 | | (c) | 150 | 1 | 2 | 3 | 3
1 | - | 3 | 2 | 1 | 2 | 4 | | | | | 1977 | | | | | | | 1978 | | | | | Dec | Jan | Apr | June | July | Sep | Oct | Dec | July | Aug | | | 0 | 76 | 61 | 1 | 1 | 1 | 7 | 78 | 59 | 1 | 1 | | (A) | 150 | 2 | _ | 2 | 2 | 2 | 2 | _ | - | 22 | 2 | | (B) | 150 | 3 | - | 3 | 2 | 2 | 2 | - | - | 12 | 13 | | (C) | 150 | 2 | 3 | 2 | 2 | 2 | 2 | 7 | 4 | 5 | 4 | | | | | 1976 | | 197 | 7 | | | | 1978 | | | | | Oct | Nov | Dec | Jan | Mar | July | Nov | Dec | Mar | May | | Nampa | 0 | 47 | 54 | 54 | 54 | 15 | - | 56 | 78 | 16 | 16 | | (B) | 150 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | | (C) | 150 | 2 | 1 | 2 | - | - | 1 | 1 | 1 | 1 | 1 | ^aSee text for irrigation schedules. total N for three seasons at Rupert was 75 mg/liter and average soil water N was 2.4 mg/liter at the 150 cm depth, which represented a 98% decrease. The average total N in the wastewater at Nampa was 36 mg/liter, and average soil water N at the 150 cm depth was 4 mg N/liter. This represents an 88% decrease from the wastewater total N concentration. Nitrate-N in the wastewater at the three wastewater irrigation fields was low with < 1 mg/liter at the three locations. Organic N is converted to NO₃ when the organic matter in the wastewater is decomposed. The nitrate concentration in the soil water was occasionally high. Water in the Twin Falls fields ranged from 0 to 167 and averaged 17 mg NO $_3$ -N/liter. By removing three high nitrate values from the total before averaging the concentrations, the mean of the remaining values was 8.7 mg NO $_3$ -N/liter. Many soil water samples had NO $_3$ -N concentrations below 1 mg/liter. The nitrate concentrations at Rupert were considerably lower than at Twin Falls with a range of 0 to 13 and an average concentration of 2.3 mg NO $_3$ -N/liter. Nitrate concentrations at Nampa were intermediate with a range of 0 to 30 and an average of 7.8 mg NO $_3$ -N/liter (Table 4). Phosphorus concentrations in the wastewater were low, which resulted in relatively small applications of phosphorus. The normal irrigation rates for the three fields would not maintain the fields at adequate phosphorus levels. Phosphorus in the sugarbeet processing wastewater at Twin Falls averaged 1.9 and ranged from .8 to 4.1 mg/liter. At Rupert the P concentration averaged 1.8 and ranged from .7 to 4.3 mg/liter. At Nampa the P concentration averaged 1.7 and ranged from .3 to 2.9 mg/liter. The average concentration at the 150 cm soil depth was .19, .12, and .62 mg/ liter for the Twin Falls, Rupert, and Nampa sites, respectively (Table 5). These low phosphorus concentrations should minimize P leaching through the soil. The higher P concentration in the soil water at the Nampa site compared to the other two sites is probably associated with soil differences and is not directly related to phosphorus concentrations in the wastewater. Potassium applications on the wastewater irrigation fields were high to very high. The lowest potassium concentrations and applications were found at the Rupert fields with intermediate values at Twin Falls and the highest at Nampa. ŀ Table 4. Nitrate-Nitrogen in sugarbeet processing wastewater and in water extracted from 150 cm deep in wastewater irrigation fields | | | | | | | | | | | _ | | | |-------------------------|---------------|-------|------|------|--------|-------|------|------|------|-------|------|--| | Location
(Irrigation | Soil
Donth | | 1975 | | igrams | | lite | r | | | | | | schedule) | cm | Oct | Nov | Dec | Jan | Feb | Mar | Anr | June | Tully | | | | Twin Falls | 0 | | 2.0 | 1.0 | 0.5 | 0.6 | 1.4 | 1.5 | 0 | 0.1 | | | | (A) | 150 | 1.8 | 8.6 | 1.4 | 0.4 | 0.5 | 0.3 | 0.3 | 0.8 | 0.5 | | | | (B) | 150 | 23.3 | 8.7 | 2.4 | 0.4 | _ | 2.7 | 0.5 | 2.3 | | | | | (c) | 150 | | 12.2 | 0.3 | 0.5 | | 0.2 | 3.6 | | 49.0 | | | | | | | | 1977 | 7 | | | | | 1978 | 3 | | | | | Nov | Dec | Jan | Feb | Mar | July | Nov | Dec | Apr | July | | | | 0 | 0.4 | 0.5 | 0.6 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0 | | | (A) | 150 | 35.2 | | 68.6 | | 50.0 | 43.6 | | 2.9 | | 0.4 | | | (B) | 150 | 140.5 | 4.4 | 1.3 | - | 0 | 38.5 | **** | _ | 0 | _ | | | (C) | 150 | 8.5 | 0.6 | 0.3 | 0 | 0.6 | 10.4 | 0 | 1.8 | | 34.4 | | | | | 1975 | 5 | | 1976 | 5 | | | | | | | | | | Oct | Nov | Dec | Jan | Feb | Apr | July | Oct | Nov | Dec | | | Rupert | 0 | 1.0 | 1.1 | 1.5 | 1.6 | 1.0 | O | 1:1 | 0.6 | 0.8 | 0.4 | | | (A) | 150 | 10.2 | 5.2 | 0.6 | 0.2 | 0.4 | 3.5 | 1.0 | 0.9 | 1.4 | 0.1 | | | (B) | 150 | 13.8 | 0.8 | 0.6 | 0.1 | - | 3.2 | 0.4 | 0.2 | 0.2 | 0.2 | | | (C) | 150 | 12.8 | 10.6 | 10.3 | 10.2 | - | 0.1 | 0.9 | 1.0 | 0.2 | 0.5 | | | | | 197 | 7 | | | | | 19 | 78 | | | | | | | Jan | | June | | | Dec | | July | _ | | | | | 0 | 0.1 | 0.4 | 0.1 | 0 | 0.1 | 0 | 0.4 | | 0.4 | | | | (A) | 150 | _ | | 16.9 | 1.0 | ***** | - | 0.6 | 3.2 | 7.3 | | | | (B) | 150 | 0.1 | 0.3 | 0 | 0.1 | 0.1 | 0 | 1.7 | 9.5 | 1.6 | | | | (C) | 150 | 0 | 2.6 | 0 | | 0 | 0 | 0.4 | 0.9 | - | | | | | | 1976 | 5 | | 197 | 7 | | | | 1978 | | | | | | Oct | Nov | Dec | Jan | Mar | July | Nov | Dec | Mar | May | | | Nampa | 0 | 1.4 | 1.8 | 1.6 | 0.3 | 0.2 | - | O | 0 | 1.7 | 2.4 | | | (B) | 150 | 9.0 | 3.6 | 5.3 | 0.5 | 1.1 | 23.6 | 12.2 | 1.8 | 3.4 | 5.1 | | | (C) | 150 | 9.0 | 17.3 | 1.7 | 4.5 | 1.0 | 23.6 | 0 | 0 | 1.9 | 2.2 | | ^aSee text for irrigation schedule. Potassium concentration in the wastewater at Twin Falls averaged 5.6 and ranged from 1.1 to 13.2 meq K/liter. At Rupert the average was 3.2 and ranged from 1.6 to 7.3 meq K/liter. At Nampa the average was 7.3 and ranged from 3.2 to 14.8 meq K/liter. Potassium concentrations in the soil water extracted from the 150 cm depth were 2.3, .21, and .21 meq K/liter for Twin Falls, Rupert, and Nampa respectively (Table 6). A large amount of K is being applied to these wastewater irrigation fields and varying amounts are being leached Table 5. Total phosphorus in sugarbeet processing wastewater and in water extracted from 150 cm deep in the wastewater irrigation fields | Location | Soil | | 1975 | millig | rams
1976 | - | Liter | | | | | | |-------------|------|------|------|--------|--------------|------|--------|------|------|------|------|--| | (Irrigation | - | | | 70 | | | 36 | A | | | 7 1 | | | schedule) a | cm | 0ct | Nov | Dec | Jan | Feb | Mar | Apr | | June | | | | Twin Falls | 0 | | . 85 | | 1.2 | | | 1.10 | | | .18 | | | (A) | 150 | . 09 | .05 | .10 | | | | | .57 | . 43 | .26 | | | (B) | 150 | . 05 | .08 | .10 | | | . 1. | | | .15 | .25 | | | (C) | 150 | .06 | .07 | . 04 | .05 | 5 – | .16 | .08 | 3 - | .09 | .16 | | | | | | | 1977 | | | | | | 1978 | | | | | | Nov | Dec | Jan | Feb | Mar | July | Nov | Dec | Apr | July | | | | 0 | 2.08 | | 4.06 | _ | 1.02 | | 2.31 | | .79 | .26 | | | (A) | 150 | .22 | .12 | .06 | _ | _ | .56 | .14 | .16 | - | .22 | | | (B) | 150 | .08 | .16 | .08 | | | - | .13 | - | | - | | | (C) | 150 | .06 | .06 | .12 | .08 | .08 | .11 | .12 | . 14 | _ | .06 | | | (0) | 100 | .00 | .00 | • 12 | • 00 | •00 | • 4.4. | • 12 | • 14 | | .00 | | | | | 1975 | õ | | 1976 | 5 | | | | | | | | | | Oct | Nov | Dec | Jan | Feb | Apr | Aug | 0ct | Nov | Dec | | | Rupert | 0 | 1.23 | 1.37 | 2.08 | | .68 | .47 | | | 1.67 | | | | (A) | 150 | .07 | .02 | .02 | .04 | .07 | .16 | .50 | .08 | .25 | . 38 | | | (B) | 150 | .27 | .10 | .08 | .06 | - | .19 | .11 | .07 | .14 | .11 | | | (C) | 150 | .04 | .01 | .03 | .02 | *** | .12 | .10 | .05 | .04 | .48 | | | (6) | 100 | | | •05 | • 02 | | • 12 | | | • 04 | • 40 | | | | | 197 | 7 | | | | | 1978 | 3 | | | | | | | Jan | Apr | July | Sep | 0ct | Dec | May | July | | | | | | 0 | 4.27 | .02 | . 12 | . 75 | 2.59 | 2.28 | .05 | .10 | | | | | (A) | 150 | _ | .06 | .06 | .06 | _ | | .20 | .08 | | | | | (B) | 150 | _ | .12 | .06 | .04 | .06 | .12 | .09 | . 26 | | | | | (C) | 150 | .04 | .04 | .12 | .09 | .06 | .08 | .08 | .11 | 1976 | | | 1977 | | | | | 197 | | | | | | 0ct | Nov | Dec | Jan | | July | | Dec | Mar | May | | | Nampa | 0 | | 1.46 | 1.38 | | 1.22 | - | | | 2.94 | | | | (B) | 150 | . 24 | .31 | . 44 | .26 | . 17 | .20 | . 15 | .13 | .19 | .12 | | | (C) | 150 | 1.29 | 1.16 | 1.24 | .96 | . 37 | 1.03 | 1.04 | .90 | .63 | .81 | | | | | | | | | | | | | | | | ^aSee text for irrigation schedule. through the soil profile. A K equilibrium will probably be reached after a few years of wastewater irrigation in which the K leached from the fields will approximately equal that applied in the wastewater minus K used by crops. Electrical conductivity (EC) and the associated salt in the wastewater is one of the general concerns about irrigating with sugarbeet processing wastewater. Table 7 gives the EC values for wastewater and soil water ex- Table 6. Potassium in sugarbeet processing wastewater and in water extracted from 150 cm deep in the wastewater irrigation fields. | T | 0-11 | *************************************** | | | | | | 14 | | * ****** | ****** | |----------------------|------|---|------|------|--------|-------|-------|------|------|----------|--------| | Location (Irrigation | Soil | 1975 | I | 1976 | equiva | атепс | s per | ттсе | r | | | | schedule) | cm | Nov | Dec | Jan | Feb | Mar | Apr | Mav | June | .Tu11 v | Nov | | Twin Falls | 0 | 13.2 | 7.5 | 5.9 | 6.4 | 4.9 | 3.3 | .02 | | .1 | 5.4 | | (A) | 150 | 2.1 | 6.8 | 4.2 | 4.6 | 6.0 | 3.3 | . 2. | . 4 | . 3 | 1.6 | | (B) | 150 | .1 | 4.8 | 2.9 | _ | 4.8 | 3.9 | _ | .1 | .2 | 2.6 | | (C) | 150 | 1.4 | 4.7 | 3.0 | | 4.2 | 3.4 | - | .1 | .1 | .9 | | | | | 1977 | | | | | | | 1978 | | | | | Dec | Jan | Feb | Mar | May | July | Nov | Dec | Apr | July | | | 0 | 7.2 | 6.1 | 5.5 | 2.9 | .1 | . 7 | 5.4 | 5.7 | 3.0 | .1 | | (A) | 150 | 3.8 | 1.7 | | 3.5 | .1 | . 4 | 4.0 | 2.8 | - | _ | | (B) | 150 | 2.7 | 3.5 | _ | 2.1 | _ | 3.2 | 2.7 | 2.1 | 3.8 | _ | | (c) | 150 | 2.2 | 1.7 | 1.6 | 1.5 | 1.2 | 1.2 | 3.3 | 2.9 | - | 2.7 | | | | 1975 | | | 1976 | | | | | | | | | | Oct | Nov | Dec | Jan | Feb | Apr | Aug | Oct | Nov | Dec | | Rupert | 0 | 5.25 | 2.3 | 7.3 | 1.61 | 2.9 | .18 | .18 | 1.61 | 1.75 | 3.23 | | (A) | 150 | .13 | .13 | .11 | .06 | .09 | .10 | .17 | .14 | .14 | .07 | | (B) | 150 | .16 | .15 | .28 | .11 | _ | .08 | .18 | .16 | .18 | .09 | | (C) | 150 | .06 | .10 | .10 | .11 | | .06 | .17 | .13 | .11 | .02 | | • • | | 197 | 7 | | | | | 197 | 8 | | | | | | Jan | Apr. | July | Sep | 0ct | Dec | May | Ju1y | Aug | | | | 0 | 3.83 | . 15 | .13 | 3.78 | 2.39 | 1.84 | . 89 | .16 | .14 | | | (A) | 150 | | .10 | .14 | .17 | | ***** | .51 | .62 | .94 | | | (B) | 150 | _ | .16 | .24 | .18 | . 32 | .62 | .74 | .57 | .56 | | | (c) | 150 | .10 | .08 | .07 | .11 | .16 | .24 | . 30 | .23 | .24 | | | | | 1976 | | | 1977 | | | | | 1978 | | | | | 0ct | Nov | Dec | Jan | | July | Nov | Dec | Mar | May | | Nampa | 0 | 6.82 | | | 6.61 | | | 3.31 | | 8.65 | | | (B) | 150 | .01 | .02 | .01 | .03 | .07 | | .04 | | | | | (C) | 150 | .05 | .08 | .05 | 1.11 | .60 | ,20 | .15 | .20 | .29 | .17 | | | | | | | | | | | | | | ^aSee text for irrigation schedule. tracted from the 150 cm depth in the wastewater irrigation fields at the three locations. At the Twin Falls site, EC in the wastewater was 2.6 to 6.8, irrigation water 0.3, soil water extracted from 150 cm depth .9 to 1.7 in summer and 5.2 mmhos/cm 2 in winter during the wastewater irrigation season. At the Rupert site EC values were as follows: wastewater 1.6 to 3.2, irrigation water 0.5, and soil water 1 to 3 mmhos/cm 2 . At the Nampa site EC values were: wastewater 2.2 to 6.2, irrigation water 0.8, and soil water 1.6 to 5.1 mmhos/cm 2 . Table 7. Electrical conductivity of sugarbeet processing wastewater and of water extracted from $150~\mathrm{cm}$ deep in the wastewater irrigation fields | Location | Soil | m | illiml | hos/ | centim | eter ² | | | | | | |-------------|-------|------|--------|------|--------|-------------------|------|------|------|------|------| | (Irrigation | Depth | 1975 | 1976 | | | | 1977 | | | | 1978 | | schedule) a | cm | Nov | Jan | Mar | July | Nov | Jan | Mar | July | Dec | July | | Twin Falls | 0 | 6.8 | 2,9 | 3.0 | . 3 | 2.7 | 4.2 | 3.4 | . 5 | 3.7 | . 5 | | (A) | 150 | 4.3 | 4.4 | 3.1 | 3.0 | 3.8 | 3.0 | 4.7 | 2.6 | 2.1 | - | | (B) | 150 | 1.3 | 3.5 | 3.1 | 2.1 | 3.3 | 3.4 | 3.1 | | | .9 | | (C) | 150 | 3.6 | 3.6 | 2.5 | 1.7 | 2.7 | 3.0 | 3.3 | 1.1 | 2.8 | 1.7 | | | | | | | | | | | | | | | | | 1975 | 1.976 | | | | | 1977 | ' | | 1978 | | | | Nov | Jan. | Apr | July | Nov | Dec | Apr | July | Dec | July | | Rupert | 0 | 2.0 | 2.9 | .6 | . 5 | 1.0 | 1.4 | .6 | . 6 | 1.6 | . 6 | | (A) | 150 | 1.5 | 1.9 | 1.9 | 1.9 | 2.3 | 2.2 | 1.6 | 1.3 | | 2.6 | | (B) | 150 | 1.9 | 1.5 | 2.0 | 1.6 | 2.2 | 2.0 | 1.5 | . 9 | 3.0 | 2.2 | | (C) | 150 | 1.3 | 1.5 | 2.2 | 1.8 | 1.5 | 1.9 | 1.4 | 1.1 | 3.0 | 2.6 | | | | | | | | | | | | | | | | | 1976 | | | 1977 | | | | | 1978 | 3 | | | | Oct | Nov | Dec | Jan | Mar | Aug | Nov | Dec | Mar | July | | Nampa | 0 | 3.1 | 3.7 | 4.1 | 4.3 | 2.4 | . 8 | 2.1 | 2.1. | 3.9 | . 6 | | | 150 | . 6 | . 7 | 1.2 | 3.4 | 4.7 | 5.1 | 3.4 | 2.4 | 3.0 | 4.0 | | | 150 | 1.8 | 2.5 | 3.6 | 3.4 | 3.8 | 2.9 | 1.6 | 2.0 | 3.8 | 4.1 | | | | | | | | | | | | | | ^aSee text for irrigation schedule. Many of the EC values reported for the wastewater and for the soil water extracted from the 150 cm depth are too high for growing some crops. The irrigation water quality used during the growing season in every case was good. Salt associated with irrigation wastewater is applied in the winter when the crops living on the fields are dormant. Because the crop water requirements are low, salt concentrations in the water had little effect on the crop. Irrigating with good quality water in the spring and during the cropping season leaches the salt from the root zone and lowers the EC to acceptable levels for growing the alfalfa and grass hay. Calcium, magnesium, and sodium concentrations were determined in the wastewater and soil water samples and are reported elsewhere (20). Sodium absorption ratios (SAR) were calculated from the calcium, magnesium, and sodium concentrations. The SAR value at all sampling sites, in all the wastewater samples, and in all soil water samples are low. Therefore no problems should exist with sodium buildup and loss of soil infiltration capacity when irrigating with these wastewaters. Wastewater SAR values at Twin Falls, Rupert, and Nampa ranged from 1.8 to 8.8, 1.0 to 3.2, and 1.6 to 4.1 respectively. SAR values in the irrigation water at the three locations were .7, .8, and 1.1 respectively. Soil water SAR values ranged from 1.6 to 3.0, 1.0 to 2.0, and 0.6 to 5.6 respectively for the three above locations. All of these values are considerably below the value that would pose a sodium hazard to the soil. The pH values observed in the water and soil samples taken from the wastewater irrigation fields were between 6.6 and 8.4 which are within the normal range for neutral to calcareous soils. With these values, there is no reason to be concerned about the soil or water pH resulting from irrigating with these sugarbeet processing wastewaters. ## COMPOSITION OF HARVESTED HAY Chemical composition of the harvested hay samples for 1976, 1977, and 1978 are given in Table 8. These analyses include nitrate nitrogen, total nitrogen, phosphorus, and potassium. The total nitrogen analyses include nitrates and represent a fairly wide range of values from 1.63 to 3.88% total N. This corresponds to a crude protein concentration of 10.2 to 24.2% (total N x 6.25). The nitrate concentrations of the initial samplings were relatively high ranging up to 9500 ppm nitrate nitrogen. Later, the nitrate concentrations decreased to safe values for livestock feeding. Values above 2000 ppm nitrate nitrogen are considered to be hazardous to livestock. Livestock can be conditioned to high concentrations of nitrate or the feed can be diluted with other feed containing less nitrate (9). Phosphorus concentrations in the forage ranged from adequate (.2%) to high (.6%) 498 Table 8. Analyses of hay samples grown on sugarbeet processing wastewater irrigation fields | Location-Date | Nitrate-N
ppm | Total N | Phosphorus — percent — | Potassium | |---------------|------------------|---------|------------------------|-----------| | Twin Falls | | | | | | July 1976 | 2250 | 2.22 | .21 | 2.78 | | June 1977 | 3520 | 2.22 | .24 | 3.00 | | Aug 1977 | 1090 | 2.98 | .30 | 3.88 | | Oct 1977 | 2020 | 3.10 | .25 | 3.14 | | June 1978 | 330 | 1.66 | .22 | 3.27 | | July 1978 | 560 | 2.44 | .20 | 2.72 | | Sept 1978 | 810 | 2.70 | .29 | 3.04 | | Rupert | | | | | | July 1976 | 3540 | 2.52 | . 32 | 2.66 | | June 1977 | 1000 | 1.63 | .28 | 2.99 | | Aug 1977 | 310 | 1.80 | .23 | 2.76 | | June 1978 | 560 | - | .28 | 2.71 | | Sept 1978 | 415 | 2.41 | .21 | 2.08 | | Nampa | | | | | | Oct 1976 | 9500 | 3.08 | .62 | 4.06 | | May 1977 | 780 | 3.45 | . 39 | 3.71 | | June 1977 | 220 | 2.32 | . 35 | 3.69 | | July 1977 | 230 | 2.62 | .38 | 2.72 | | May 1978 | 70 | 1.65 | .23 | 3.10 | | July 1978 | 875 | 3.88 | . 46 | 3.40 | | Sept 1978 | 415 | 3.06 | . 30 | 2.10 | and should provide a phosphorus sufficient ration for livestock. Potassium concentrations in the forage were also adequate to high. With the amount of potassium being applied in the wastewater, the K content will continue to be high in the forage. Phosphorus and potassium concentrations in the forage are within satisfactory limits and should pose no problems for livestock. ## SUMMARY Wastewater irrigation rates of 10 cm per irrigation at intervals of 1, 2, or 4 weeks were established at three sugarbeet processing plants in southern Idaho having wastewater irrigation fields. The rates of irrigation used by the sugar company for disposing of wastewater on the balance of the fields was also monitored. Wastewater applications ranged from 28 to 169 cm per year with additional high quality water used during the summer to grow hay crops on the fields. The organic matter applied in the wastewater (COD) ranged from 7.9 to 140 metric tons per ha-year or 22 to 383 kg/ha-day. These highest rates applied excessive amount of organic matter and nutrients to the fields. The range of organic matter applied to the general field areas that were not in the experimental plots was 10 to 47 metric tons/ha-year. Nitrogen applications in the wastewater ranged from 280 to 4200 kg N/ha-yr with the range for the general field area being 277 to 1425 kg N/ha-yr. The lower nitrogen application rates could be utilized by growing plants but the highest rates were in excess of crop requirements or crop utilization capacity. Phosphorus applications were relatively low for wastewater irrigation with 5 to 50 kg P/ha-yr being applied. Phosphorus applications in many cases were lower than the crop requirements and would therefore require periodic soil tests and perhaps phosphorus fertilization. Potassium applications were in many cases very high with a range of 130 to 6350 kg K/hayr. Potassium applications in the wastewater will probably reach an equilibrium where the applied potassium will leach through the soil at about the same rate that it is applied. Electrical conductivity and salts in the wastewaters are high to very high and would pose serious problems for irrigated crops if the wastewater were used during the growing season. Winter irrigation with the wastewater, when crops are dormant, increases the salt content of the soil without adversely affecting the crops. However, excess salt can be leached from the root zone of the plants with good quality irrigation water before the hay begins to grow in the spring. Even though a large amount of salt was leached through the soil in these wastewater irrigation fields, the crops grew satisfactorily and the system works well and looks good. Leaching wastewater organic constituents has been greater than would be desired. Measurements at the 150 cm depth showed lower values of COD removal than were found with potato processing wastewater. Soil depths greater than 150 cm and the relatively short season irrigation with the wastewater should minimize organic pollution. Irrigation with good quality water in the summer has given the fields time to recover from organic loading and the soil micro-organisms decomposed the added organic residues. The design and management of these wastewater irrigation fields has been excellent and irrigating with sugarbeet processing wastewater should continue for many years if the loading is not greater than that of the 4 week irrigation frequency. #### LITERATURE CITED - (1) Adriano, D. C., A. E. Erickson, A. R. Wolcott, and B. G. Ellis. 1974. Certain environmental problems associated with long term land disposal of food processing wastes. In Proc. 1974 Cornell Agr. Waste Mangt. Conf., $\overline{\text{N.Y}}$. State Col. Agr. Life Sci., Ithaca, NY 222-223. - (2) Adriano, D. C., L. T. Novak, A. E. Erickson, A. R. Wolcott, and B. G. Ellis. 1975. Effects of long term land disposal by spray irrigation of food processing wastes on some chemical properties of the soil and subsurface water. J. Envir. Qual. 4(2):242-248. - (3) American Public Health Association, Inc. 1971. Standard methods for the examination of water and wastewater. Ed. 13, 874 pp., New York. - (4) Butler, R. M., N. H. Wooding, and E. A. Myers. 1974. Spray-irrigation disposal of waste water. Pa. State Univ. Spec. Cir. 185, 17 pp. - (5) De Haan, F. A. M., and P. J. Zwerman. 1973. Land disposal of potato starch processing waste water in The Netherlands. In Proc. 1973 Cornell Agr. Waste Mangt. Conf., N. Y. State Col. Agr. Life Sci., Ithaca, NY: 222-228. - (6) De Haan, F. A. M., G. J. Hoogeveen, and F. Riem Vis. 1973. Aspects of agricultural use of potato starch waste water. Neth. Jour. Agr. Sci. 21:85-94. - (7) Fisher, H. D., and J. H. Smith. 1975. An automatic system for sampling processing waste water. Soil Sci. Soc. Amer. Proc. 39(2):382-384. - (8) Gilde, L. C., A. S. Kester, J. P. Law, C. H. Neeley, and D. M. Parmelee. 1971. A spray irrigation system for treatment of cannery wastes. J. WPCF 43(10):2011. - (9) Hill, R. M., R. L. Ogden, and C. W. Ackerson. 1972. Nitrate toxicity in forage, fact or fiction? Nebr. Farm, Ranch and Home Quart. (Fall 1972:18-20). - (10) Koo, R. C. J. 1974. Irrigation of citrus with citrus processing waste water. Govt. Reports Announcements 74(4):104-105. - (11) Loehr, R. C. 1974. Agricultural waste management, problems, processes, approaches. Academic Press, Inc., New York: 576 pp. - (12) Meyer, J. L. 1974. Cannery waste water for irrigation and ground water recharging. Calif. Agr. 28(8):12, 18. - (13) Pearson, G. A., W. G. J. Knibbe, and H. L. Worley. 1972. Composition and variation of waste water from food processing plants. U.S. Dept. Agr., Agr. Res. Serv. ARS 41-186, 10 pp. - (14) Pearson, G. A. 1975. Response of asparagus to applications of simulated vegetable-processing wastewater. J. Envir. Qual. 4(3): 337-339. - (15) Rauschkolb, R. S., R. D. Bottel, J. Panderhill, W. N. Helphenstine, and R. Chavarria. 1975. Land application of fruit and vegetable cannery byproducts. Univ. of Calif. Coop. Ext. Soil and Water Newsletter. No. 26, p. 3-4. - (16) Reed, A. D., W. E. Wildman, W. S. Seyman, R. S. Auyers, J. D. Prato. and R. S. Rauschkolb. 1973. Soil recycling of cannery wastes. Calif. Agric. 27:6-9. - (17) Smith, J. H., R. G. Gilbert, and J. B. Miller. 1976. Redox potentials and denitrification in a cropped potato processing waste water disposal field. Jour. Envir. Qual. 5(4): 397-399. - (18) Smith, J. H., C. W. Robbins, J. A. Bondurant, and C. W. Hayden. 1977. Treatment of potato processing waste water on agricultural land: water and organic loading, and the fate of applied plant nutrients. In Proc. 1976 Cornell Agr. Waste Mangt. Conf., April 28-30, 1976, Rochester, N.Y. - (19) Smith, J. H., R. G. Gilbert, and J. B. Miller. 1978. Redox potentials in a cropped potato processing waste water disposal field with a deep water table. Jour. Envir. Qual. 7(4): 571-574. - (20) Smith, J. H., and C. W. Hayden. 1980. Treatment and disposal of sugarbeet processing wastewater by irrigation. Cons. Res. Report (In Press). - (21) Soderquist, M. R., G. I. Blanton, Jr., and D. W. Taylor. 1972. Characterization of fruit and vegetable processing waste water. Proc. Third Nat. Symp. on Food Processing Wastes. EPA-R2-72-018. pp. 409-436. - (22) Soderquist, M. R., and J. L. Graham. Fruit-, vegetable-, and grain processing wastes. J. WPCF 49(6):1118-1123. - (23) Timm, H., N. B. Akesson, M. O'Brien, W. J. Flocker, and G. York. 1976. Soil and crop response to variable loading of canning wastes. Presented at ASAE meetings at Davis, CA, June 1976. - (24) United States Environmental Protection Agency. 1974. Methods for chemical analysis of water and wastes. U. S. Envir. Protection Agency, 298 pp. - (25) White, J. W., Jr. 1973. Processing fruit and vegetable wastes. In Symposium on Processing Agricultural and Municipal Wastes, G. E. Inglett, ed., pp. 129-142.