计成本点法 的行动的 无论的第三人称

Response of Sugarbeets Grown Under Dryland Conditions to Phophorus Fertilizer *

three (acresses the likelihood of Publichants in

J. D. Etchevers and J. T. Moraghan

Received for Publication November 17, 1982

INTRODUCTION

Little recent information is available concerning the phosphorus (P) nutrition of sugarbeets in the Red River Valley of Minnesota and North Dakota, where sugarbeets are mainly grown under dryland conditions. In this region the relatively immobile fertilizer P is frequently located in soil zones low in available water for extended portions of the growing season.

Responses of sugarbeets to P fertilizer in the Red River Valley were reported several decades ago by Rost et al. (15) and Odgen et al. (12), but little emphasis was placed on soil testing in these investigations. However, later experiments failed to produce responses to this fertilizer (1). Banding of P fertilizer was found to be an efficient means of increasing plant P in sugarbeets growing on soils low in extractable soil P in the Red River Valley (11).

The NaHCO₃-extractable P test (13) is widely used for predicting the need for P fertilizer, but correlation studies under dryland conditions with sugarbeets are sparse. Irrigated sugarbeets in Idaho (21) and Washington State (9) did not benefit appreciably from application of P fertilizer when NaHCO₃-extractable P levels in the surface soil were greater than 10 ppm. The critical value for irrigated sugarbeets in Utah was given as 12.5 ppm NaHCO₃-extractable P (7). Draycott and Durant (4) found sugarbeets growing on soils with greater than 15mg/l of

^{*}Published with the approval of the Director, North Dakota Agr. Exp. Sta. as Journal Series No. 1265. The authors are Professor, Centro de Edafologia, Colegio de Postgraduados, Chapingo 56230, Mexico and Professor, Department of Soil Science, North Dakota State University, Farog, ND 58105.

NaHCO₃-P showed little benefit from application of P fertilizer under English conditions. Low soil temperatures increase the likelihood of P deficiency in sugarbeets (18) and this may be an important factor in the Red River Valley. Abbott and Nelson (1) in Arizona concluded that soil-test values of 5 to 10 ppm NaHCO₃-extractable P would be adequate for sugarbeet-seedling growth in warm soils but inadequate during cool periods.

The primary objectives of this study were: (a) to relate the likelihood of responses by sugarbeets to P fertilizer to levels of NaHCO₃-extractable P; and (b) to determine the nature of the response by this crop to P fertilizer at a responsive site.

MATERIALS AND METHODS

Nine field experiments to study the relationship between responsiveness of dryland sugarbeets to P fertilizer and soil levels of 0.5M NaHCO₃-P (13) were conducted in the Red River Valley between 1974 and 1976. Levels of soil-extractable P at the sites ranged between 4 and 12 ppm (Table 1). The experimental design in all cases was a

Site	Year	Location	Soil	pH	0.5M NaHCO3-P
					ppm
1	1974	Abercrombie	Gardena-Glyndon	8.0	4.5
2	1974	Hillsboro	Glyndon	8.1	6
3	1974	Hillsboro	Fargo	7.9	· 11
4	1974	Cummings	Gardena-Glyndon	7.8	7
5	1975	Cummings	Gardena-Glyndon	7.8	12
6	1975	Kelso	Fargo	7.5	6
7	1976	Great Bend	Glyndon	8.1	4
8	1976	Mooreton	Overly	8.2	10
9	1976	Hillsboro	Fargo	7.4	10

Table 1. Selected characteristics of nine experimental sites used to study the response of sugarbeets to P fertilizer in the Red River Valley.

randomized block with six replications, and while the range of treatments differed, application rates of 0, 11, 22 and 45 kg P/ha, as 0-48-0, were included at all sites. In each experiment, except Experiment 6, the fertilizer was broadcast and subsequently incorporated to a depth of up to 12 cm before planting; the P fertilizer was banded

at planting 5 cm to the side at a soil depth of 5 cm in experiment 6. Basal dressings of N and, where required, K fertilizers were applied at recommended rates based on soil-test values. The experimental plot normally consisted of six 9.2-m rows spaced 0.56 m (22 inches) apart. Portions of the center rows were harvested for final root yields.

A more detailed study of response of dryland sugarbeets to P fertilizer was conducted at Site 1 in 1974. The rates of broadcast and incorporated P fertilizer, as 0-48-0, were 0, 11, 22, 45 and 90 kg P/ha. Each plot replicated six times in a randomized block design, consisted of eight 24.2-m length rows spaced 0.56 m apart. Sections of rows, 9.1-m lengths for intermediate harvests and 18.1m lengths for the final harvest, were utilized for determination of yield of recoverable sugar and P accumulation in storage roots and in plant tops. Petioles of recently mature leaves, dried at 70°C, were periodically sampled for acetic-acid extractable P (6, 20). "Available" water, expressed as the quantity of water in selected soil-depth increments above the 1.5-MPa (15-bar) value, was monitored by gravimetric and neutron thermalization procedures.

% sugar

RESULTS AND DISCUSSION

Response to Phosphorus Fertilizer and Soil Phosphorus

Data showing the relationship between yields of roots and recoverable sugar and levels of 0.5M NaHCO₃extractable soil P are given in Table 2. Increased yields of roots and recoverable sugar were only statistically significant at Sites 1 and 7, the sites with the lowest levels, 4.5 and 4 ppm, respectively, of extractable P. Small statistically significant yield increases in roots,

Experiment NaHCO3-P	Check Roots	yield Rec. Sugar	Roots Response "F"	ratio ^a		Rec. Response "F"	sugar ratio
ppm	t/ha	kg/ha	T/ha	5	- 2	kg/ha	100
1 4.5	30.0	4120	6.2	**		950	**
2 6	24.0	3220	1.6	*		290	NS
3 11	34.7	4860	0.9	NS		55	NS
4 7	33.9	5140	2.7	**		220	NS
5 12	36.5	6600	2.4	NS		380	NS
6 6	27.3	4720	0.1	NS		4	NS
7 4	32.7	5660	4.0	**		750	**
8 9.5	37.9	6310	0.6	NS		20	NS
9 10	28.9	4140	1.1	NS		490	NS
"NS indicates not significant	; * and ** indi	cates significance a	it the 0.05 and 0	.01 leve	15 01	r probability	a belique eine rinsid.

Table 2. Yield of storage roots and recoverable sugar together with magnitude of response to application of 45 kg fortilizor P/ba at nine dryland sites in the Pod Piver Valley

but not recoverable sugar, were also found at Sites 2 and 4 with 6 and 7 ppm extractable P, respectively. Phosphorus fertilizer in no case had a significant effect on sugar percentage.

Few soils used for sugarbeet production in the Red River Valley contain less than 5 ppm NaHCO3-extractable P; most contain greater than 10 ppm (5). The critical level of 0.5M NaHCO3-P currently used for fertilizer recommendations is 10 ppm. Continued use of this value appears justified since: (a) early-season growth responses to P fertilizer are sometimes observed in sugarbeets growing on soils with P-test values between 5 and 10 ppm-extractable P and may occasionally result in increased yields of recoverable sugar; (b) fields are heterogeneous with respect to extractable P and portions of some fields averaging 10 ppm, or even higher, extractable P may require added P for maximum production; and (c) added P fertilizer may be beneficial in years when early growing season temperatures are below average.

Harvesting Date and Response to Phosphorus Fertilizer

<u>Yield</u> data. The influence of harvest date and level of P fertilizer on selected yield characteristics at Site 1, with 4.5 ppm extractable P, are given in Table 3. Statistically significant responses of roots and recoverable sugar to added fertilizer occurred at all harvests, but the percentage response data clearly show that the relative responses decreased as the season progressed. This seasonal trend was even more apparent for leaf canopy growth; no response in yield of tops was found at the 123day harvest, even though a vigorous canopy with a large quantity of dry matter was still present at that time.

Early season responses to P fertilizers, which may result in no or small increases in final sugar yields, have been previously reported (17). One or more of the following factors may contribute to this effect: (a) internal cycling of plant P may decrease the importance of external supplies of P for older plants; (b) availability of P fertilizer may decrease relatively more than soil P

JOURNAL OF THE A.S.S.B.T.

the growing season progresses, especially if available as water in the application zone becomes limited; (c) native soil P may be relatively more available later in the growing season due to higher soil temperatures or to increasingly larger volumes of soil being penetrated by

Table 3. Influence of time of sampling and phosphorus fertilizer on yield of tops, roots and sugar at a P-responsive site (Site 1).

Days	undde an	P fe	rtilizer	LSD	Percentage			
planting	g O	11	22	45	90	(0.05)	90 kg	P/ha
			Roots,	kg/ha			1.44	2022
54	1.9	2.7	3.1	3.4	3.4	0.6	79	
80	13.1	16.6	17.0	18.5	19.6	2.0	50	
100	26.7	29.3	31.4	31.6	32.5	2.6	22	
123	30.0	32.7	33.8	36.2	36.1	2.7	20	
			Tops,	T/ha				
54	0.9	1.3	1.5	1.5	1.5	0.2	67	
80	3.3	4.0	4.2	4.6	4.5	0.6	36	
100	5.4	6.4	6.4	6.1	6 9	1.0	28	
123	6.2	6.3	6.4	6.7	6.3	NS	2	
			Suga	r. %				
				and the				
54	8.0	8.0	8.0	8.2	8.3	NS		
80	9.6	9.8	10.1	9.9	10.1	NS		
100	11.3	11.7	11.5	11.6	11.7	NS		
123	15.7	16.1	15.5	15.8	15.5	NS		
		Reco	verable	sugar,	kg/ha			
54	110	150	180	200	200	40	8	2
80	1020	1300	1410	1460	1680	210	6	5
100	2260	2870	3030	3090	3180	390	* 4	1
123	4120	4570	4570	5070	4960	480	2	0
521 4	12 (14) bous	T. UNL	1982 19	10.043	C.02. 3.00	REAL ROOM	1.10.3	60.18

apercentage response = Yield (90 kg P/ha) - Yield check) x 100 Yield (check) then you be helding?

the fibrous root system; and (d) P absorption by sugarbeets may decrease with age (16). Banded P fertilizer, per unit of applied P, was more efficient than broadcast and incorporated fertilizr under certain conditions in the Red River Valley (11). Acetic-acid extractable P data from petioles of recently mature leaves suggested that such effects for sugarbeets growing on responsive soils

are associated with early season responses.

Application of P fertilizer had no significant effect on percentage sugar, even early in the season when large yield responses in tops, roots and recoverable sugar were apparent. This lack of an effect on root quality is commonly found (3). However, in some situations P deficiency reduced absorption of soil nitrate and the accumulation of petiole nitrate (8). Phosphorus fertilization in such cases could conceivably influence root quality. Schmehl and James (17) concluded that application of P fertilizer may increase the sugar percentage at intermediate levels of soil N.

Table 4. Influence of time of sampling and phosphorus fertilizer on accumulation of P in tops and storage roots of sugarbeet plants grown at a P-responsive site (Site 1).

-11.U	WOD JALAN	1.00	212.00	0.96 54 1	A DESCRIPTION OF THE			1000
Days	AHARADELA	A 10	hooph	and ad	10000	ic. Len	tab al	
after	Plant			P ferti	lizer, k	g P/ha		LSD
planting	part		0	11	22	45	90	(0.05)
	- [1	12.000	4104	11848	Plant P	, kg/h	a	1.1.1.1.1
54	Roots		0.4	0.7	0.8	1.0	1.0	0.2
	Tops		2.1	3.2	3.8	4.3	4.4	0.7
	Σ		2.5	3.9	4.6	5.3	5.4	
80	Roots		1.9	2.7	2.6	3.9	4.8	0.5
	Tops		5.5	7.5	8.1	11.1	9.0	2.7
	Σ		7.4	10.2	10.7	15.0	13.8	
100	Roots		3.9	5.1	6.9	8.2	10.2	1.4
	Tops		8.4	10.2	11.4	12.8	16.8	2.6
	Σ		12.3	15.3	18.3	21.0	27.0	
123	Roots		5.2	6.7	8.0	10.8	12.3	1.7
	Tops		7.6	9.1	9.1	11.6	12.5	2.1
	Σ		12.8	15.8	17.1	22.4	24.8	

Phosphorus-uptake data. Accumulation of P in storage roots and tops increased with application of P fertilizer (Table 4). The accumulation in storage roots increased up to the final harvest, but decreased between the 100- and 123-day harvests for tops. This decrease in P in tops was probably mainly due to death of older leaves; however, translocation of the element between tops and roots may also have been a factor. The P in tops in the Red River

JOURNAL OF THE A.S.S.B.T.

Valley is usually returned to the soil and may sometimes benefit subsequent crops.

The apparent recovery data, given in Table 5, show that from 13 to 27% of the fertilizer P, depending upon rate, was utilized. Much of the remaining P fertilizer is undoubtedly available for following crops. Etchevers (5) in a survey of Red River Valley sugarbeet fields found that 40% of the fields studied contained in excess of 20 ppm NaHCO3-P; some fields with long histories of P fertilization had in excess of 45 ppm extractable P. Detrimental effects of high levels of P on sugarbeets were reported from Washington State (9), and high soil P levels were suspected to interfere with micronutrient nutrition of this crop in Nebraska (14). Sugarbeets is not regarded as especially susceptible to Zn deficiency (3). However, severe Zn deficiency can be produced in a susceptible crop, such as flax, by increasing available P levels in soils with marginal levels of available Zn (10).

Table 5. Influence of time of sampling and rate of P fertilizer on apparent recovery of fertilizer P by tops and storage roots of sugarbeets at a responsive site (Site 1).

Days after		8.5	5.5 P F	fertilize	er, kg P/ha	1	66
planti	ng		11	22	45	90	
		 		Apparent 1	cecovery ^a ,	%	
54			13	10	6	3	
80			25	15	16	7	
100			27	27	19	16	
123			27	20	21	.13	

^aApparent recovery = $\frac{Plant P (added fertilizer)-Plant P (check)}{kg fertilizer P/ha} \times \frac{100}{1}$

where "Plant P" is expressed in kg/ha

<u>Petiole-phosphorus</u> data. Acetic acid-extractable P concentrations in petioles of recently mature leaves are given in Table 6. The critical values of extractable P, in agreement with several other recent reports (11, 21), decreased as the growing season progressed; critical values varied from greater than 2000 ppm soon after the establishment of a canopy with a leaf area index in excess

of 2, to a value around 600 ppm at the 123-day harvest.

One interesting feature of the extractable-P data was the unusual increase between the 80- and 88-day harvests. As indicated by the data given in Table 7, the "available" water in the 0 to 30-cm depth increment was relatively low

Table 6. Influence of time of sampling and phosphorus fertilizer on acetic-acid extractable phosphate in petioles from recently mature leaves at a P-responsive site (Site 1).

Days						
after	a	P fer	tilizer, k	kg P/ha	the second has	LSD
planting	0	11	22	45	90	(0.05)
TALLY'S P.	da júvoge	Plant-e:	xtractable	P, ppm	1475.41 2	法国家党会
54	1540	1900	2050	2200	2470	330
74	670	1090	1100	1580	1900	220
80	570	720	840	1170	1440	240
88	660	1170	1210	1710	2230	360
100	580	940	1020	1570	2100	270
123	350	530	630	1180	1320	230

during much of the growing season. Ninety four millimeters of the total rainfall of 357 mm recorded during the growing season fell soon after completion of the 80-day sampling. This precipitation should have increased the "available" water in the soil zone where the fertilizer was located, and presumably the availability of fertilizer P in this zone. The magnitude of the increase in the acetic acid plant-extractable P increased with higher levels of fertilizer P.

Table 7. Available soil water at selected times during the growing season in the 0 the 30 and 0 to 180-cm depth increments of plots treated with 90 kg P fertilizer/ha (Site 1):

Days from	Available	e soil H ₂ O								
planting 0-30 cm 0-180 c										
	cm									
- 31	4.9	36.1								
54	0.2	23.4								
62	2.4	26.7								
80	1.9	18.9								
100	0.9	16.1								
123	0.1	11.3								

SUMMARY

The influence of soil levels of 0.5M NaHCO3-P on field

responses of sugarbeets to P fertilizer was studied at nine sites under dryland conditions in the Red River Valley; levels of extractable soil P ranged between 4 and 12 ppm. Statistically significant responses to 45 kg fertilizer P/ha, resulting in increases of recoverable sugar of 13 and 23%, respectivley, were only obtained at the two sites with the lowest contents, 4 and 4.5 ppm, of extractable P.

The nature of the P-fertilizer response was studied in more detail at the site with 4.5 ppm NaHCO3-P. Percentage increases in yields of tops, roots and recoverable sugar decreased from 67, 79 and 82% at 54 days to 2, 20 and 20%, respectively, at 123 days. Apparent recovery of applied fertilizer P varied from 27 to 13% at 123 days with the 11 and 90 kg P/ha rates of application, respectively. Acetic-acid extractable plant P data suggested that lack of available soil water in the zone of fertilizer application limited uptake of fertilizer P during portion of the growing season.

ACKNOWLEDGMENTS

The senior author expresses his gratitude to the Ford Foundation for making his contribution to this research possible. Special thanks are also due to the Sugarbeet Research and Education Board of Minnesota and North Dakota for financial support, to the cooperating farmers for their interest and support, to the American Crystal Sugar Co. for the sugar analyses, and to Mr. Paul Tiedeman and Miss Teresa Papachek for dedicated technical and secretarial assistance, respectively.

LITERATURE CITED

(1)	Abbot	t,	J.	L.	an	d	J.	Μ.	Nelso	on.	1980.	Phos	sph	orus
	ferti	11	zati	on	of	fa	11	pl	anted	sug	arbeets.		ι.	Am.
	Soc.	Su	gar	Beet	Te	ch	nol		20:43	39-4	48.			

- (2) Carruthers, A. and J. F. T. Oldfield. 1961. Methods for assessment of beet quality. Int. Sugar J. 63:137-139
- (3) Draycott, A. P. 1972. Sugar-beet nutrition. John Wiley and Sons, New York.

- (4) Draycott, A. P. and M. J. Durrant. 1976. Response by sugarbeet to superphosphate particularly in relation to soils containing little available phosphorus. J. Agric. Sci. 86:181-187.
- (5) Etchevers, J. D. 1977. Response of sugarbeets to phosphorus fertilization. Ph.D. Thesis, North Dakota State University.
- (6) Etchevers, J. D., J. T. Moraghan, and I. R. Chowdhury. 1978. Analysis of sugarbeet petioles for phosphorus. Commun. Soil Sci. Plant Anal. 9:905-914.
- (7) Haddock, J. L. 1959. Yield, quality and nutrient content of sugarbeets as affected by irrigation regime and fertilizers. J. Am. Soc. Sugar Technol. 10:344-355.
- (8) Hills, F. J., R. L. Sailsbery, A. Ulrich, and K. M. Sipitanos. 1970. Effct of phosphorus on nitrate in sugarbeet (Beta vulgaris L.). Agron. J. 62:91-92.
- (9) James, D. W., G. E. Leggett and A. I. Dow. 1967. Phosphorus fertility relationships of Central Washington irrigated soils. Washington Agric. Exp. Sta. Bull. 688.
- (10) Moraghan, J. T. 1980. Effect of soil temperature on response of flax to phosphorus and zinc fertilizers. Soil Sci. 129:290-296.
- (11) Moraghan, J. T. and J. D. Etchevers. 1981. Method of phosphorus fertilization for sugarbeets in the Red River Valley. J. Am. Soc. Sugar Beet Technol. 21:103-111.
- (12) Ogden, D. B., R. F. Finker, R. F. Olson and P. C. Hanzas. 1958. The effect of fertilizer treatment upon three different varieties in the Red River Valley of Minnesota for: I. Stand, yield, sugar, purity and non-sugars. J Am. Soc. Sugar Beet Technol. 10:265-271.
- (13) Olsen, S. R., C. V. Cole, F. S. Watanabe and L. A. Dean. 1954. Estimination of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ. 939.
- (14) Peterson, G. A., F. N. Anderson and R. A. Olson. 1966. A survey of the nutrient status of soils in the North Platte Valley of Nebraska for sugarbeet production. J. Am. Soc. Sugar Beet Technol. 14:48-60.

JOURNAL OF THE A.S.S.B.T.

- (15) Rost, C. O., H. W. Kramer and T. M. McCall. 1948. Fertilization of sugarbeets in the Red River Valley. Minnesota Agric. Exp. Sta. Bull. 399.
- (16) Saric, M. and M. Curic. 1962. Stage of growth in relation to uptake of phosphorus by sugar beet. Agrochimica 6:375-384.
- (17) Schmehl, W. R. and D. W. James. 1971. Phosphorus and potassium nutrition. p. 138-169. In R. T. Johnson et al. (eds.). Advances in Sugarbeet Production: Principles and Practices. The Iowa State Univ. Press, Ames.
- (18) Sipitanos, K. M. and A. Ulrich. 1971. The influence of root zone temperature on phosphorus nutrition of sugarbeet seedlings. J. Am. Soc. Sugar Beet Technol. 16:409-421.
- (19) Soine, O. C. 1968. Uptake of phosphorus by sugarbeets. J. Am. Soc. Sugar Beet Technol. 16:409-421.
- (20) Ulrich, A., D. Ririe, F. J. Hills, A. G. George, and M. D. Morse. 1959. 1. Plant analysis. A guide for sugarbeet fertilization. Cal. Agric. Exp. Sta. Bull. 766.
- (21) Westerman, D. T., G. E. Leggett, and J. N. Carter. 1977. Phosphorus fertilization of sugarbeets. J. Am. Soc. Sugar Technol. 19:262-269.

in photopharus ferrilization for sugarbarus in the

Dedant D. B., R. F. Finher, R. F. Olvon and F. C. Massas. 1935. The silart of invitiant treatment agon three different variaties in the Red Blown while of Minesson for: 1. Stand, yield, sugar, partity and men-sugars. 1. Set. Joc. Sugar Seat

Olsen, S. J., C. V. Dole, F. S. Mursanbe and L. A. Sere 1973. Estudination of available phosphorus is volle by exclaction with addium bitathante. FURA vict. 939.

Persent G. A., T. H. Anderson and A. A. Gison, 1916. A quiver of the nurrient status of soils in the Porth Platte Valley of Nebrana For sugarbasy production. J. An Soc. Sagar Dark Tachaol. 14146-