Old and New Plateaus

P. B. Smith ${ }^{1}$

Just twenty years ago on January 31, a small group of men interested in sugar beet research sat down in what was then called "the second annual round-table discussions," in Fort Collins, Colorado. This group of 57 individuals formed the nucleus of your American Society of Sugar Beet Technologists which was formally started the next winter. From this small beginning has grown our present Society of 519 active members.

Largely through the efforts of members of our organization have come the tremendous advances that we have been privileged to see take place in the beet sugar industry. More progress has been made in the last twenty years than in all of the time since Achard recognized the commercial value of that wonderful plant of nature, the sugar beet, in Germany 170 years ago this year.

In no period of our sugar beet production record have we so much to boast about as in the progress obtained in the 1936 to 1955 period. For the 20 -year period 1916 to 1935, when European varieties were used exclusively, the average beet yield was 10.4 tons per acre. ${ }^{2}$ For the next 20 -year period, 1936 to 1955, with American varieties coming into use, the yield was 13.7 tons. The difference is 3.3 tons, or a gain in yield of 31.7 percent.

[^0]You will note in the acompansing char that the full effect of resistance to curly top and leaf spot and better-adapted American varieties was not shown until the last decade. 1916 to 1955 . If you consider only the last five years, the average acre yed is 1.9 .9 tons and the gatn is $51 / 2$ ons or 53 perrent.

Let's go a litte further in our analys. The actual salue of the increased yide per acre of the last twenty years ower the firt iwenty years totals nearly 300 million dohars more lor famers. It has averaged 530.68 more for cach are harvested.

During the last wenty yars, slighty more than deven millon dollars have been spent on agricultural reseach in sugar beets by U.S.D.A. state experiment stations, sugar companies and other agencies. Thoe research funds have really paid off. You might want to daim that all of the increasel production is due 6 cour research efforts, but if we dam more modestly half of the cotal gains as contributed by our improved varicties and agronomic rescarh, the rato of cost to incrated value to famers hows a retum of $\$ 22$ for cach dollitr spon for research.

The payoff during the last five years for ead dollar spent on rescarch shows a return of sit if we cham only 50 pereent of the increase when compared with the 1916 to 1995 period. Certainly this may be the proper foreast for future research retums.

It is inspiring to recount some of the things that have taken place in the last two decades of sugar beet production since the inception of this Socicty. Twenty years ago all of the beets were produced with hand labor. The 1955 crop saw 97 percont of 98 percent of the total acreage harveted by machines, and hand topping is now a rarity. In the words of George Gobel, "Vou can't hardly find them things mo more!"

Development of segmenting and deconticating seed brought along with it improved drills and equipmont and a defmite saving in labor. Application of machine thming and weeding tools for in-the-row cultivation has drastically changed all fomer hand thiming methods.

Varicty improvement in yield, sugar, and processing quality has had a pronounced effect on grower's production and factory operation. Only seven years ago a few monogerm secd-bearing plants were discovered in Oregon. These are being transfered into the gem plasm of present commercial varieties, and to is sate to say that in another decade, we will be considering only single germ seed strains. When we combine new bybrid monogerm varicties with seletive weed chomicals and complete madhe thiming, you can readily apprectate that we are on the threshold of far higher plateaus of production.

Modern machincry, quipment, and the know-how to use it has done much to save labor, and revolutionary propress has been made. We know, however, that famers are still searhing for additomal ways to save time and cffort.

Not all of the dramatic progress has been made in mednaniation and varicty improvemont. Fungicides, insecticides, nematacides, weedicides, and the improvements in our processing of the sugar bee have contributed
greaty to mone effichoy in protuction and extaction. Lnotuded in chomical advances are improved and greater use of minem fertilizers. Our solk have been yiclding larger and larger crops with betor control of insets. virues, and disases through we of some of the nower chemicals. A new phatea of protuction has been realized on the sugat bect fatm through a combination of these splondid achicements of ow research endeavers.

We tmericans get impationt for results in our way of life, and tor often we probably are too practial in what we ask of agricultural resarch. I foel that reconty there has been an improved athtude in our beet sugar reseach thinking towad lumamonal and bavic resarch. A fow years ago studies started on the question of "how suga beets grow." It stared giving ws momation that undoubtedy will have at pronomnced affect on our ablity to Berease development of the orop in the fature moder diterences in chmate and chvirommon.

Henry Wallace recontly sad that hasic researd "has an uncunny way of becoming pratical." I hope that this trend bocomes apparm as adievemonts in future rescarth are brought aboun. Quite often we get discouraged in not sceing the translation of the results of the fundamental type of research to practical application. We should mot apolegize for this leg between now discoweres and then genem ase as it is just an example of our say of domg things and in accopting now ideas. Some revearchers reconty reponce a study at Iosa State College in the last fiteen years that there is quike a varition in the way form folks adopt new mothods. They have found that there is alwass a group that adopt things quickls, but there are others who ate satisfeel with their mode of doing things and ate slower to parake of the truts of the new ideas. On the average it akes about soven years betwen the time that the first people accep the new practices and general adoption by mont farmers. As an example, acceptance of horid seed rom took fourteen years before 9 percent of the acteate was planted to the new lypes in the com belt.

The studies show, however, hat with chemical comern of insects, weeds. and discases, it has been found that from the time the fres experimental work has been proven successful, famers are apt to mosh imo using the chemicals sery quickly and on a large proportion of acrage before all of the danger have been thoroughly explored.

The acceptance of scientife adrances, however, in the lat fow years by sugar beet growers indicates the semmbess of our research and that, on the whole, we have established a very good respect for our fondmes and that our extension toam has helped immencly. This is due to the closeness in Which we operate in the sugar beet intastry between the men who are responsible for diseminating the infomation to the growers and the actual reseach stafs in our Deparment of Ayriohture, college experiment stations. and ompary rescard stations. Due to this dose-knit organization, the information has been used inteligenty and effecively to bring about quick use of the findings. Lei us hope that this contimuation of mutual respect, confdence, and understanding will sustain our work in the future.

There is one thing exdent in our future resarch policy that whould be emphasized, and that is that our soils in recont year bave vielded pheno-
menally large tonmages. A whotrabl of the phant lood required for these higher-ytelimes crops means a mote haplep detion of our resoures for the future. We must be ever alert to restore and rebuid the potenial soit resenoir. Fundamental knowledge of the basic processes of the sugar beet plant is necesary in order to fulll farther advances in sugat production. Whit every improvemont in protuctivity of our beet strams, the must apply contimed vigorous, basis stuties of soil them and physiology of the beet plant that will bay of in beter muthion for future crops. fin our quest for higher sugar poduction, we must not oretook the use of new herbicides: now tratments for diseases, insects and pests: breeding of nematode resistance and virus resstant strabs in combuction whit improved ferthers: and in those areas where irrgation is practicd, a better, more eholent utilization of water. Let us always keep sufficht funds in our "Scientific Bank" to keep ahend of the necessoy withdmwats for improsed crop pooduction.

[^0]: ${ }^{1}$ President, American Society of Sugar Beet Technologists, 1954-55; General Agriculturist, The Great Western Sugar Company; Vice President, Northern Ohio Sugar Company.
 ${ }^{2}$ U.S.D.A. Agricultural Statistics, 1942, p. 130; and Agricultural Statistics, 1954, p. 70.

