Breeding of Sugar Beets With Reference to Sodium, Sucrose, and Raffinose Content

R. F. Fingnim and H. M. Bausmanay

In recent ycars, new tedmiques and laboatory cquipment sutable for mass operation in sugar beet chemical analysis have been developed. For example: fame spectophotometry for the detemination of varous cations and the paper chromatographic techmique for the detomination of mafmose and other melassigenic subsances.

The literature before 1930 contains mumerous relerences to non-sugars but wery litte data applied directy to a breeding program. Such references were brielly reviewed by Doxtator and Cahon (2). Iater references using chemical amalysis other than sucrose in the breading phases of the reseach work have been smmaried by Wood (3).

Many investigators (1, 2, 3, 4, 5) have applied scletion pressure for low sodium content of individual roots. All have shom that the sodium contont was siguficantly comelated with sumose but in a negative relatomship. All have shown by progeny tests that significant reductions in sodium could be accomplishod by mass selection. In the majority of such tests, significanty higher sucrose percentages have been experiencel. However, in very low investigations has a low sodium selotion produced progenies which significantly out yiedded their original parents in pounds sucrose per acte.

Wood (5) reported on progeny tests of roots selected lor high and low ratinose contont. He comeluded that the raffose coment of beets could be significanty reduced by mass selection and that this chatacter may be raher simply inherited.

The objectives of the presem investigations were to separate the original population into groups wilh distinctly different quantities of toted chemical constituents and to detemme the effectivencss of usimg low sodium as a criterion in selecting for higher sucrose content.

Methods and Materials

Approximately 1,200 roots of an clite stock of American No. $\&$ were sclected during the fall of 1938 . These rons were xdeted phenotyphally for size, shape, goox crowns, etc Each root was weighed, sampled, and analyed for sworose, mafinose, sotium, gatatinol, and inostol.

Table 1 shows the conchation onefficients of the various charasteristics studied in the original selected population. Suovese and sodium were reported as percent of beet, while raffoose, gatactinol, and inositol were percent on dry substance: the wetgh was reported in pounds.

These rots were separated into threc main groups of approximately 400 roots each. The three groups represented a matom mixture of the origimel varicty and did mot differ greatly from each wher as every beet fad an equal chame of being selected for any one of the thee groups.

[^0]Table 1.-Cormation Cociments of 1046 koots Selected from an Elite Grock of American No. 1.

	靼的fimose	Sodium	Calactinol	hnositol	Weight
Sumose	-. 1412	$-.7115$	--. 3483	- -1012	-.2322
Rallinose	*-A.-.	.0944	. 0063	. 1412	--.0096
Sodimm	\cdots2473	. 1122	. 1509
Gobuctime	\%mx <x***	.	--.0021	.016\%
Yucsitol	- .	*amacom	...	\cdots	.0845

$r=.062$ for signticane at the 5 beremt leved.
$y=.081$ for significanes at the 1 percen level.
Each of these main groups were again divided into two smaller subgroups, alogether, making a total of six small groups. A seventh group was added by selecting approximately every 85 th beet regardess of its physical and/or chemical chatacteristics as a check selection with which the other groups could he compred. This group was labeled 34407 .

The first group was subdivided by selccing paired roots with the same sucrose contont, but one ($54-108$) having a high sodium contout and the other (54-409) having a low sodium content. The second group was subdivided by selecting for high and low rafloose content. These were given pedigree numbers of $54-410$ and $54-411$ respectively.

In the last group the beets were divided into two groups, old and even numbers. Thirty-one roots were selected within the even numbers on a combined basis of both sucrose and sodium percent. The coefficient used for this selection was sucrose percentage times (one mints sodium coment). Within the odd numbers, thirty beets were selected on the basis of high sugar only, These were given the numbers of 54412 and $54-413$ respectively.

All obher characteristics were reonded but only the ones montioned above were used in differentiating this population ino the various subgroups.

The number of roots selocted for cach group, the general moms, and standard errors of means of each character studied for cach group, and for the cmire population, are shown in Table 2.

Table 2,-Mcans, Standard Errors, and Number of Roots of the Entre Population, and of the Seven Selected Grouns for Various Chemical Characteristins.

Pediguee Number Cutheria for Selection	$\begin{aligned} & \frac{8}{8} \\ & \frac{8}{4} \\ & 6 \end{aligned}$	$\begin{aligned} & = \\ & \frac{E}{3} \\ & \frac{2}{3} \end{aligned}$			$\begin{gathered} 4 \\ 5 \\ 5 \\ 4 \end{gathered}$
54.409 cbeck	32	$2.68+.15$	$13.18+.28$.1129 +.0095	.434.6.0244
54-408 High Sucrosememigh Nat.	39	$32.28+.12$	$15.68 \pm .11$.0915 +.005	.120+.039
36-409 High Sumoxe-1.os Na.	32	$2.09 \pm .10$	13.67-11	.0901 $\pm .0017$. $158 \times .0990$
3-410 High Ratimose	38	2.59 5.18	12.74*k. 40	$.1049+.0087$	$.811+.0211$
5441 Low Ratimose	59	$2.53 \pm .15$	$13.71 \pm .26$.0808 $\pm .0074$. $158+.0062$
54-412 A Coer of Na. and Sucrose	31	$2.07+.00$	$15.82 \pm .12$	$.0493+.0035$	$.387 \pm .0272$
54-43 Heph Sucrose	90	$2.24 \pm .12$	$15.52 \pm .18$. $0606 \pm .0048$. $778+.0414$
Frutw Populatom	11044	$2.55+0.3$	13.69 ± 68	$.0972 \pm .0015$. $457 \pm .0061$

Roots of each of the above seven groups were space isolated in the pring of 1951 and preduced seed that fall. Seed from hese seven groups plus seed of the origmal pareneal sock were plamed in an 8×8 Latin Souare test at Rocky Ford, Colomdo, on April 25, 195 . Plots were trows wide
 samples wore laken at madom from the harvested roots.

Three weeks later border rows of fire of the selections were harvested and two 10 -beet samples were aken for chenical analysis. 'The objective of the seond harvest wh lo detemine whether or tot the rafthose content increased while the beets were sill srowing in the late fall.

Mesults and Discussion

The firs harvest robits of whe 1055 repligated progeny test of the
 original parcm. All seven of the chemical selections mbinated from the same parcmal varicty ant only one mass solection was mate to diferentiate these strans into their respective subpropulaions.

Highy sghilican diferemes were oblamed amomg the varous grous for every atmbute hated bu lable 3 . 'Ihis was as expected as selecton presures were appled in opposite dicetions for some of the thental charactoristics such as mafmese.

Table 3,-Stand, Vield, and Chemical kesults of the Parent and Seven Sctected Chemical Strains.

Pedigree Number	Crieria for selection		$\underset{H}{E}$	范	$\begin{aligned} & { }_{5}^{3} \\ & 0 \\ & 0 \end{aligned}$	E	$\frac{\square}{5}$
54-607	Cheek	8251	20.93	13.92	. 9772	. 214	81.1
54.408	High Sucrome High Na.	7808	24.71	16.01	. 0554	.218	101.2
54.409	High Snorese low Na,	813\%	25.32	16.05	.0314	. 273	96.1
54410	High Ratinove	6898	$\underline{20.06}$	15.88	. 0468	. 386	98.7
5441	Low Rallmose	7714	24.6.	15.56	,042]	.191	94.5
51-42	A Coct of Sa and Sucrose	-8151	27.15	[5.64	. 0401	. 217	87.8
51413	High sumose:	7931	24.66	16.05	.0405	. 237	94.1
Parent	Amorican Xo. 1	7225	29,62	15.24	.05.4	.290	1010
General	Meat	7804	24.80	13.68	.01\%	242	. 9.1
$1.51{ }^{0} 0$		6景	2.07	. 16	. 0084	. 048	7.8
[.SD 194	Pt .	83:	2.77	. 62	.0113	,06\%	10.7
C. V.		2.87\%	292\%	1.03\%	6.32\%	6.90\%	\% 200%

Certain paired comparisons of the various strams should be onsidered because most of the groups were stected with this in mind. The comparisen of the parental saricty whit the check (54-407) shows a highly significan increase for tons and pennds sucrose per acre in faver of $\begin{gathered}\text { at } 407 \text {. Stain }\end{gathered}$ $54-107$ represents a random mixture of the selected roots from the parental varicty. Il folucial limits were calculated for the means in Pable 2 for selestion 54407 and the entire population, they would overlap. This indicates that selection $54-107$ was a satisfactory sample of the entire populat tion of 1046 root seleted from the parental hmerican No. I variety.

The results in 'lable 3 show that the progeny (5407), whe one phonotypic selection for large wellshaped roots, bred true and the root
yield was significantly increased over the parental American No. 1 variety. There were no significant differences between these strains for any of the chemical characters studied. Although significant differences were detected in stand, it did not seem to affect either the yield of tons and/or sucrose percentage. Evidently the plants were sufficiently spaced to have adequate competition.

Because selection 54-407 was part of the same population of selected beets which made up the other strains in this test and because it was significantly higher than the parental strain for tons, and pounds sucrose per acre, it should be used as the check in the various comparisons to be discussed.

One of the objectives of the experiment was to select for high and low raffinose content and then test the progenies to see if they bred true. In Table 2, the means for raffinose content for selected groups 54-410 and $54-411$ were significantly different from each other. If fiducial limits were calculated at the one percent level, the raffinose means for these two groups would not overlap. The selected roots of 54-410 also contained highly significantly more raffinose than the check 54-407, while the roots of 54-411 were significantly below the check.

The progeny results in Table 3 show these two selections differ significantly at the one percent level for percent raffinose. The check selection with a mean of .214 was significantly higher at the five percent level than $54-411$ with a mean of .164 . However, the check was significantly lower at the one percent level than the high raffinose selection 54-412. The first cycle of selection indicated that these chemicals were hereditable and greater advances could be made in breeding for a higher raffinose variety than for a lower raffinose strain.

The correlation coefficients in Table 1 show a negative relation for raffinose with sucrose and weight, however, the latter was not significant and the value was so low that weight and raffinose could be considered independent of each other. Sodium had a low positive correlation which was expected because of its negative relationship with sucrose. 'The means of the selected roots in Table 2 verified these correlations as the low raffinose selection (54-411) was lower in sodium and higher in sucrose percentage than 54-410; weight was approximately the same. However, none of these means, including the check, were significantly different at the five percent point.

The progeny test of Table 3 also confirms the above correlation with the high raffinose selection, $54-410$ being slightly higher in sodium and lower in sucrose and weight than the low raffinose selection. The progeny of 54-411 produced significantly more tons and pounds sucrose per acre than 54-410. This might indicate that the negative correlation between raffinose and weight was stronger than the value obtained in Table 2. It also may have been due to environmental conditions. Another possibility was that either extremely high or low raffinose content was detrimental, as the check yielded significantly higher tons than these extreme raffinose selections. The check was significantly higher than the low raffinose selection at the five percent level and the high raffinose selection at the one percent level. It also was significantly higher in sodium percentage and slightly lower in sucrose.

The border rows of five of the selectons were harvested thee wreks later and two lo-beet samples were taken for chemikal malysis. These are shown in lable 4.

Table 4.-Chemical Results of the Late Harees of the Five Strains.

Xedigree Number	$\begin{gathered} \text { Percont } \\ \text { Sur; } \end{gathered}$	$\begin{gathered} \text { Porcont } \\ \text { Na. } \end{gathered}$	$\begin{gathered} \text { Percent } \\ \text { Ralf. } \end{gathered}$	Hucate of Hafinose in 3 Weeks
54.408 High Suxrose-Tigh Na.	17.09	.0155	. 900	21.09%
54-409 Hivh Suctos - -	17.06	0596	. 308	29.8%
54-112 A Coch of Na, and suchove	16.20	.0419	. 500	21.0%
54.13 High Sucrose	17.16	.0972	. 314	82.5\%\%
larent American No. I	16.29	.0510	. 818	27, 2%
General Men	16.76	0411	. 817	29.6\%
I.SI) 5\%\% P\%	\cdots	.0199	. 029
1.SD 1\%/ P	vs	.0188	. 039	*-.....***********)
C. V.	2.01\%	11.710%	3.12\%	-

${ }^{2}$ Analyed as a ramdomizel book wesign with eight repheations and five batietics.
The raffonose data was amalyod by asuming a split plot design with dates as the sub-plots and varicties as the main plots. Highly significant differences were fond among the vatieties and the F value for dates was 76.4. In order to be significant at the one pereent kevel the f value only nected to be 7.1. The date X variety interaction was very small and nonsignificant.

What cused this increase in ralinose we do not know, but we assume that the colder weather had some effec. The mean mimimum temperature for two week before the first harvest begiming Ochober 1 was 10.9 degrees. while the minimum mean emperature between the two havests was 30.3 degrees Fabmencit. There were only thee days which were 32 degrees or below before the first harvest. and cleven days which were 32 degrees or below between the two hartests. The dates of the two harrests were Ocrober 14 and November 4 .

Additional experiments will be necessary to determine the effect of coviromment on the accumulation of rafmose.

The remainder of the test was designed to determine the effectreness of using sodium in the breeding program as a criterion in selecting for higher sucrose content.

The fact that sodium and sucrose were negatively comelated to a very high degree, is shown in Table I, suggests the possblity of usiug both of these characteristics welect for high suorose content. The hypothesh is, that the mochanisn of the beet was sud that low sodiun, per se, drecty or indirectly, tended to bring abont a higher concentration of sucrose or visa versa.

The comparison of strams $54-408$ and 54409 were selected with the same suctose coment but with a high and low sothum content. The means in Thble 2 indicate the groups were selected th that mamer as the sodium ontent of these groups was significanly different, but all other chatateristics were the same.

The revults of the progeny test are given in Table 8 . Two main points should be considered; first, the whone content of these two groups were whin 04 perent of each other in Gable 3, which was the average of 24 samples, and with 02 pereent of each other in Table 4 , which was the moan of 16 smoples. The objective of holding sumose constant during the selecting of mother roots wats fully realized in the progeny test. The second point to consider was the sodium content. The results of the progeny test in Table 9 show the menn sodium perconage for $51-408$ as 0531 and for 51409 as .0314 . These means were signifiamly different at the one percon level. Similar results are shown in Table 4. No other signficant differcnces were detected for these two groups. In comparing these two selections (5 4408 and 54409) with the check we find differences among the following chatacteristies: (A) The sucrose content of both selections was significanty higher than the check at the one pereent level, (B) selection $54-408$ was signifiomty lower than the choek in tons per acre, (C) setection 54-409 was highly significantly lower in sotium perem than ether the check or selccion 54-408, ad (D) selection 5409 was significanly higher in raftnose than the check.

The fact that the low sodim seletion did mot incrase the sucrose content indicates that these two chemical mehanisms were not as directly related as first thought. and that sugar beet warietics could be bred with a high soctium and a high sucrose omtent. However, a strict interpretation of the sucrosesodium corrclations in Table 1 shows only 50 pereent of the factors which affect low sodium have an effect on high sucrose. Perhaps the envirommental factors have great effect on these two characters. Agan additional investigations are needed to study the inberitance of sucrose and sodium. Such exporiments also should be designed to study the environmental effect and the geneticenvironmental interactions.

The last comparison was designed to test two mothods of selection for high surose content. Group 54412 was selected on the basis of a sodiumsucrose coeflecent while group 34419 was selected only on the basis of high sucrose. If low sodhum was a factor in selecting for high sucrose, then the progeny of group $54-412$ showh contain a higher percent of sucrose than group 54418.

Again if flducial limis at the fre perent point were oldolated for the means of groups $51-112$ and 51418 in Table 2, all would ovelap. This would indicate that the solected roots of these two groups were patt of the same population for all characteristios shown in Table 2.

The results of the progenics from these two groups are shown in Table 3. The sodium content of these two groups were approximately equal. Therefore, selection for high sucrose was just as effective for lowering the sodium content as selection on a sucrose-sodium coefficiout. The sucrose means were 15.64 for group $54-412$ and 16.05 for group 31418 . The difference between these means was 41 while 46 was needed for significance. Athough we can not say that these populations are different at the five pereent point, it is rertamly questionable, whether they are estimates of the same population. The results shown in "Fable 4 also favor selection 54-413 over $54-412$ for higher surose content, but again it was mot statistic-
ally signifiant. However, over to samples were aken from these straims and the trend of $51-13$ was slighty higher in sucose. A comparison of the check 54407 with these two selections shows 34415 to be significanty higher in sucrose coment than the check, while sclection SH-412 was not statistionlly differnt from the theck. If this comparison were used, it would indicate that selecting for high shoose content was more effective than using a sothumsuctose cocficient in obtaining progenics with a higher sucrose content.

The weigh facto between these groups was in favor of group 5412 The mean ton yidd of group $54-112$ wat 27.15 while group $54-113$ yicted only 24.66 . This difference was significant at the five pereent level. Very few investigators in the past bave reponted an morease in weight in low sodiom selctions, and the correlations in labie i show that suth a result is unlikely. However, the data in this test in Table 3 show higher yied in tous for both of the low sodium selections ($51-409$ and $51-42$) when compared to their respective counterpart ($54-408$ and 34409). When groups 54412 and $54-418$ wore compared for grose sucrose per acre, no sigmificant differenes could be detected. A "t" test tans applice to find the level of significance for these two groups in pounds sucose per atere A " i " waluc of 756 with 14 degrees of Treedom was calculated. The probability that these monns were different was less than do perent.

Three poines should be considered from the results of the sodium test. First, the sodium content was heritable and a how sodium vaiety of sugat beet can be bred if suct was desirable from the processing view point. Scomd, it was possible to bred for various levels of sodium whont effecting the sucrose content. Third, the velection baved on suoroce only produced progenies which were slighty bigher, although not significanly, in sucrose than the progenies of a sucrose-sodium selection.

In view of the above facts it seems at the present time that sodium was actually of lithe value in the brecling progran and that a high suorow wection sould be acomplished without seleting for low sodium. Also, the fact that surose perentuge was measured with more precision than sodium, as shown by the C. V. values, emphasized the need of sucrose read. ing without combining it with a rodium reading which has a large varince.

Sumbary

Approximately 1,200 roots of in chite stock of American No. 1 were selected in the fiold in 195\%. These roots were subdivided into seven groups. Six of the groups were seleted for distindly diflerent chemical contente and the seventh group represented a raudom mixuture of the 1,200 selected roots.

From the data submitted in this report the following condusions were drawn.

1. It was possible to sclect roots with high and low rafinose content and these bree true in progeny tests.
2. The raffonse content of selections in the fied was foum to have incressed approximaty 30 perem in thee week. Lower minmum mean tomperature wore suggested as one possibility for ousing this incrase.
3. Pared roots were seletel with the same suorose content but with one havig a high sodium cottent and the other having a low sotiun conten. Progenics from these scections bed tuc, ice, both had cqual suorose content but sigmifoantly different sodium percentages. This indicated that sodium, per se. had bitle effect on the surose content and that the negative corrclation of sucrose and sodium could be easily broken
4. Progenies selected only on the basis of their sucrose content had a higher sucrose content than progenies selected on the basis of a sucrosesodiun oofficient.
5. In view of the dati at the present time it seems that sodium actually is of litle value in the brecding program, untess a low sodium variety is extrendy important from the processing viewpoint.

References

(1) Damberg. H. W. 1900. Chemical methods for brecding sugar beets. Proc. Mmer, Soc. Sugar Beet Toh. 1pp. 197-188.
(2) Doxtatok, C. W. and CABros, E. R, 1950. Sodiom and potassium contem of sugar beet vaictics in some westem bee growing areas. Proe. Amer. Soc. Sugar Bece Fech pp. 141-151.
(3) Doxmam, (. W, and Bauskman, H. M. 1929. Parent-progeny tects for sothum and potassiam content. Proc. Amer. Soc. Sugar Beet Tect. pp. 319.321 .
(4) Brows, R. I. and Woor, R. R. 1952. Improvement of procssing quality of sugar beets by breeding methods. Proc. Amer. Soc. Sugar Beet Teh, pp. ita-318.
(9) Wood, R, R. 1994. Brecting for improvement of processing characteristios of sugar heet varictics. Proc. Amer. Soc. Sugar Beet 'Tech. VIII (2):125-18\%.

[^0]: Chef Phat Breoter and Head Rexarch Chomist, reqoctively, American Crystal Sugh Company, Rocky Fomd, Coloralo.

 Xtombers in parmbeses refer to litemate cirad.

