Compaction Caused by Tractor Wheels in the Cultivation of Sugar Beets

O. W. Monson

The cativation of sugar beets, five or six times during the sason, has a comulative compacting effect on the soil, the resules of which have mot yet been fully or definitely detemmed. That considerble compaction occurs is readily admitted since on all of the seeling and coltivating operations. the equipment used is so designed that the tractor wheels travel in the same row or path cach time. For four-row equipment this means that every oher row becomes a path for a tractor whed. The intervening rows, on the other hand, receive the full beneft of the cultivation because no compaction occurs.

The compacting force will, of course, depend on the total weight of the tractor and the woight distribution on the wheels of the tractor. For example, a Model A International Tractor ${ }^{2}$, a size ordimarily used for coltivating suga beels, weighs about 2,850 pounds with the driver. The weight distribution is as follows:

> Front wheel 950 pounds or 175 eath whee
> Rear wheels 1,900 pounds or 905 cach wheel

With the beet cultivator mounted on the tractor, the total weigh, with driver, is increased to 3,470 pounds; 1,160 on the tron and 2,310 on the rear.

This tactor is equipped with b-inch tires on the from wheels and g-inch on the reat. The momat or prescribed inflation for these tires is 24 pounds of pressure in the front and 12 pounds in the rear. Such a tractor weighing 2,850 pounds with driver at Huntey Ficld Station, Montana, was used in connection with a study to measure the eompaction which occurs when cultivating sugar beets.

The bearing surface of the tines on the ground was medsured with the tactor standing still. The method used was to jack the wheel off the foor, paint the lower section of the tire with black pant, then lower the whed onto a large sheet of paper. This left a deax impression of the bearing surtace of the tire. Only the lugs left an impression on the paper. However. on loose soil the grooves between the lugs would also carry some of the load.

The area, in square inches. of the impression made by cach tire was arefully measured with a planimeter. From these measurments, and the weigh carried by cach wheel, the pounds per square inch bearing pressure of the tractor wheel on the ground was calcalated. The procedure destribed above was repated for both front and rear tires while inflated four pounds above mormal and lour pounds below normal. The beaning surkat and bearing pressure and pounds per square inch between wheel and ground are given in Table 1.

[^0]Table 1. Compacting Forec ol Tractor Wheds with Tires tulated Font Ponmds Nbove Nomal, Nommal, and Tour Pounds Below Vommal.

Note that the pounds per square inch bearing pressure of the front wheels when under inflated was nearly 20 percent les than wih nomat inllation. The pounds per square inch bearing pressure when infated above normal was practically the same as momal. For the rear wheds the pounds per square inch bearing presure was nowly 10 percent less when under intated and 12 perent more when over inflated than with normal pressure. It is believed that the vibration of the trator also affect the amount of compaction.

Compared to the above, the pressure from the hoof of an avcrage work horse, weight 1,600 poumls, is about 21 pounds per square inch, and of a 160 pound man, 5.7 pounds per spuare inch. It shonld, of course, be remembered that the area compacted by a horse's hoof is comparatively small and that there is abo little possibitity that the horse wobld step in the same place each time durimg succeding cultivations, whereas, the compaction from a tactor whed is a continuous strip along the entire row. Thus, the cumulative compaction from horse's heofs would not be so pronounced as from the tractor wheel.

Some idea of the amount of compaction which takes place in the bee row where the tractor whed travels may be obtamed by measming the force required to drive a stake or bar into the soil. Such a test was made at the Huntley Field Station during the summer of 195 . A small pile driver was made which was used to trive a round bar into the ground by striking it with a hanmer dropped from a given disance.

In the test described, a 10 -pound weigh was used for a hammer. It wat dropped a distance of two feet for each blow. The bar driven into the ground was $1 /$ inches in diameter. Twonty-five blows were used for cad test. The teses were made betore and atter imgation and in each case were made in the row traveled by the uactor whed and in the adjacent middle row.

Figure 1.-Compaction tests, Field "K," Huntley Field Station.

The results of these tests an best be shown graphically. Figure 1, which is the average of five tests, shows a comparison between the resistance of the soil in the whed row compared to the soll resistance in the mitdle row betore irrigation. The data taken before irrigation show that the bar was driven 7.6 inches in the midde row and 5.9 inches in the wheel row which wat 1.7 inches or 28 percent farther with 25 blows in the middle row than it was in the row compacted by the tractor whed. After irrgation the test showed a difference of 2.3 inches or 20 percon in lavor of the middle row (Sce Figure 2).

Figure 2.-Compaction tests, Field "O," Huntey Field Station.

Belore imgation, the effed of compaction appeared at a deph of one inch in the whed row when the distance driven becane less than onefoum inch for each blow. In the middle row the bar was driven 5. 4 inches belore the resistance was great enough to reduce the distance driven per blow to less than one-fourth inch.

One day after irrigation a simitar test was made. The results are shown in Figure 2. In this test the bar was driven 14.5 inches by 25 blows in the midtle row compared to 12.1 inches in the wheel row. The bar was driven over three inches by the first blow of the hammer in the midule row as compared with 2.2 imhes in the whed row or nearly an inch farther. Ner 20 blows, the distance driven by one hlow of the hanmer dropped to less than onefourth inch per blow in both ases, but the distance driven by 20 blows was nearly 13.2 inches in the middle row as compared to 10.9 incles in the whee row.

These tests dearly show that tactor wheds cause considerable compation. They ato give a mosure of the amount of compation in the soil at the and of the season.

Irrigators recognize this condition and make allowance for the difterence in rate of absorption of water. The general practice is to turn a smaller stream into the whed rows because of the low intake rate, and a larger amount into the middle rows since the make rate is greater. Where the plastic tubes are used, 2 one-inch tubes are set in the middle row and one in the wheel row. When the same size stream is tuned into all rows, the whed rows usually read across the fied in about one-hall the time required for the others.

Infltration readings were taken in both wheel rows and middle rows by the ring method. Six rings were used for this test; three in the wheel rows and three in adjacent middle rows. The results are shown in Figure 3.

Figure 3.-Effect of compaction by tractor wheels on infiltration, Huntley Field Station.

These data show that a total of 5 : 16 inches of water were absobed in the middle row in $5 / / \mathrm{s}$ hours, almost an intl per hour. During the same time, $51 / 2$ hours, only $11 / 8$ mot was aboobed in the wheel row. This test was made at the end of the irrigation season after six cultivations. The tractor wheel had, herefore traveled seren thes along the same pathonce for secding, six times daring cultixating oporations.

The last irrigation of the seawn was applied during the seoond week in September. The diference in time lor the water to reach the end of the row between the middle furows and those compactel by the tractor wheds was not as obvious because of the large shrinkage cates in the soil. Many of these extended all the way aross the row so that the water from adjacent rows intermingled to such an extent that all rows reached the end at the same time.

There was. howeser, a difference between rows in the amount of wates stored in the soil. Soil samples taken before and after imigation showed that with the moisture content approximately the same in all rows before ircigation. comparatively little absomption of water took place in the whed row while the middle row absorbed the full hed capacity. The soil where the lests were taken is a heary silly day.

If is not known to what extent compaction interferes with the root development but it is thought that ompaction of the soil may affect the beet in two ways: (a) Through reduced acration, and (b) through atverse change in structure. There is also the possibility that the sol fertility may be affected indirecty by the redued acmation. Two doren beets were carefully lifted so as mol to damage the roots. The soit was then washed away by means of a fine spray of water. Before lifting, each beet was marked on the side nex to the whed row whith a colored pencil.

Ther the soll had been washed away from the roots. the beets were carcfully studied and photogrophed to determine if any significant differences in the root development existed. Is far as could be observed, there were no differences in the root development on the two opposite sides of he beet, either in the colal number of rootets or their length. The fine oots of the beet occur in two grooves or bands. The band of roots sometimes urves half way around the beet. In some cases these bands of roots are on the sides of the beet next to the furrows. In other ases they are on opposite sides longitudinally it the rows. Their position appears to result from the acidental way the seet comes to rest when dropped from the drill.

The conclusiom reached from this shori study are as follows:

1. Considcrable compaction accurs in the rows traveld by the fractor, This compaction is appatent from the driven bar test, both before and after irrigation.
2. The compartion causes a marked retution in the rate of infliration of irrigation water and also in the total amount of water stored in the soil from one irrigation. Whether or not this affects the yield of the sugar beets adversely is not known.

It is believed that the anomont of compaction can be reduced by under imfation of the factor tires. The amount of influation of water could, no doube, be increace by widenimg the whed row so a wide thallow fumow could be made. 'This would increase the aren covered with water and atso the amount of water entering the soil.

If wher equipment were tesigned, such as six or cight rows the relative number of wheel fows in proporton to the total would be greaty reduced. Further studies are hecded to detcmine to what cxtent compaction interfores with the growth and yicld of suear beets. Then measures to overome the campacting effect of the tractor wheck can be devised as far as the expected benefts will justify,

[^0]:

