An Evaluation of Mechanical Thinning of Sugar Beets in California

F. J. Hells, David Ririe, M. D. Morse and D. M. Holmberg'

In recent years the practice of complete mechanical thinning of sugar beets has increased gratly in several sugar beet growing areas of the Whited States (5)" (6). Hand thimning is a tedious task, a major item of expense in the culture of the sugar beet crop and is the last remaining obstacle to complete mechanization. Any procedure which holds promise of eliminating some of this task deserves prompt consideration. As with any new practice, however, it is important that its use be carefully evaluated to be sure that its adoption will result in an improvenont in production efficiency. For this purpose, several field trials were conducted from 1952 through 1955 to determine the effect of down-the-row type mechanical thinners on sugar beet production in Califomia.

Eleven field trials were conducted. Individual plots in all trials consisted of four-row strips through the field or experimental arca. Each treatment in each trial was replicated from 3 to 7 times. The eight trials conducted in commercial fields were harvested by machine, usually of the Maboet type. Beets from each individual plot were loaded in a separate truck. Each truck load was handled at a sugar company loading station in the usual manner with the exception that 4 or 5 samples were taken from each instead of the usual one. The average of these samples was used for determining average plot sucrose and tare percentages.

The three trials at the Experiment Station at Davis, Califomia, were harvested by hand. Plots were at least 150 feet in length and lour rows wide. One-hundred and fifty, 180, and 60 lect of all four rows were harvested in 1953, 1954 and 1955 respectively. Four, 20-beet samples were taken from each plot for sugar and tare determinations. Beets less than two inches in diameter were discarded.

Thinning machines used were the Silver " $\mathrm{i} W$ " Beet Thimer or the machine manufactured by the Dixie hmplement Manulacturing Company.

In all trials, beets were thinned mechanically acoording to the procedure outlined by the machine manufacturer. 'Ihiming heads were selected to leave at least 137 beet containing inches per 100 feet of row.

Stand counts were made before and after thinning at iwo locations across the arca sclected for each trial. All four rows of each plot were counted for each measurement takon. Thus cach plot was represented by at leas eight determinations for each measurement.

Final stand determinations were made two to four weeks after thinning. An objective was to select a stand evaluation procedure that would reffect yield differences. Previous experiments had indicated that a four-inch spacing between single beets is about as close as can be tolerated without reclucing yields appreciably (4). A four-inch space, therefore, was selected

[^0]as the criverion for determining single, double, and multple plant fills. If two beets occurred within a fourinch space, it was a "double"; il three or more, "multiple." Plants sepatated by lour inches or more were "singles." These deteminations were made in six of the trals.

Lo measure the effect of gaps between plans, a procedure outhed by the late G. W. Deming was followed (2) . Fach gap in excess of lo mohes was measured and the distance in excess of 16 mohes ronsidered as "row unochupied." Such unocupied spaces were totaled per 100 teet of wow wh develop the measure "percent row unoccupied."

Results and Discussion

Harvest roults for all trads are given in Cables 2 and ${ }^{3}$. Highly sig. nifame diferences in root yeld occurred in 8 of the 11 trials with hand thinned plots yelding from 0.7 to 6.5 tons per acre more than plots thined entirely by machine. When longhanded hoes were used to trim machine thimned beets, root yeles were usually incteased compared bo beets thmot completely by machme.

Here was a sigmbeant diference in percem sugat in only one trial. This was a 0.5 percentage point imercase in faver of machine himned bects. Codnciens of vatation lor sugar percentage in the varous trits were low, indicating that possible differences in sucrose percent could be measured whin a high degrec of prection. Failure to consistenty measure diferences indicates that mechanical himing had very lithe eflect on sugar percent.

Iare dirt, which includes smatl beets removed by screens at londing stations, was significanty higher for machine thinned plots in two trats. Differences in tare dirl between the two thiming methods in tems of tons of waste material per acre was not great.

Laboratory ture percentige tended to be higher for machine-himacd bects in most of the trials and signifamly higher in two, Diferences in baboratory and bect dump tare in favor of hand-thmmed bects an account for some of the differences in ron yield of dean beets. In most cases, however, the diltercmots in laboratory and beet-dump tare ae not great enough to explat the major portion of diferences in dean root yelds.

If a bew practice conmbutes to faming elhciency it should increase, of at least not deqease, net moome Under present ecomomic conditions in Galifornia, a grower cannot aflot a yich reduction of much more than one ton per acre by thiming acchanionly as compated to hand thinming whont reducing his net income from sugar beets. The economic effects of mechaniol thimning bave been reported dsewhere (3).

Table 4 gives detailed stand determinations for the six triols in which Whey wore made. Root yelds and the results of mulciple correlation analyses are also given. It an be seen from these data that two stand detominations. four-inch spaces containing threc or more plams and percent row unocopicd, quite consistently show dose relationship to root yictd. These two measurements refect to some degree at least, the primary reasons for poor stands: cowding of plants and unocoupied space. A count of single plants may correlate firly well with root yields but may not necessmily reflect enther of these important reasons for yich losses. Total hills per 100 fect is obviously at vex poor measure of an adequate madnemehinned stand. By this
critcrion, machine thinnce stands in all but wiat eleven in Table 4 would be considered excellent. Such counts, of course, do not reflect the very important consideration of hill distribution. When a beet containing hill is defined as one inch of row that contains one or more plans, total hills per 100 feet of row beconce an even more inadequate measure of stand. The employment of this later definition of a beet hill in the blind use of mechanical thinners is, in our opmion, a principal reason for the poor resules obtaned with twice-over thinning. Exceflent pre-thinning stands existed in the trials reported here. Thimning heads were selected to leave at least 137 beet-containing inches per 100 leet of row. In most cases row unoccupicd was a principal cause of reduced yield. Had knives been selected to leave the commonly desired 100 hills per 100 tee of row, even greater yield reductions might have occurred. Table 5 shows, for two trials, the increase in row moccupied with successive passes of the thinner.

While the stand evaluation procedure adopted for these trials is not perfect by any means, it appears to be a step in the right direction. There is a need for more work to develop a fairly simple system that an be easily used in practical ficld work. In particular, different space intervals should be considered, in addition to 16 inches, for determining row unoccupiod. Other methods of determining multiples might also be investigated.

Summary and Conclusions

Eleven field trials were conducted to evaluate complete machine thiming in comparison with the conventional hand thiming method. An attempt was made to develop a procedure for stand evaluation that would more accurately reflect differences in root yield. Results indicated that:

1. Complete medanical thimaing reduced root yield in every trial from 0.7 to $6: 5$ tons per acre. Trimming mechanically thinned beets with longhandled hoes increased yields in most cases when compared to complete mechanical thinning, but in no instance equalled the yield of hand thimed beets.
2. Sucrose percentage was not affected by mechanical thinning to an important degree.
3. Mechanical thiming tended to increase the amount of tare dirt and small beets soreened out at loading stations. This increase was not great.
4. Laboratory tare percentage tended to increase as a result of mechanical thimning.
5. Execllent root yields were produced by mechanically thinned beets. Ender current economic conditions, however, a loss of much more than one ton per acre cannot be wleated without reducing net income.
6. Differences in root yields were comelated quite well with stand measurements reflecting four-inch blocks containing three or more beets and percent row unoccupied.

Acknowledgment

The authors gratcfully thank the Spreckels Sugar Company, the Holly Sugar Corporation, and the California Beet Growers Association for their help in conducting the trials. Special thanks go to the several Califomia famers on whose farms these trials were conducted. Thanks also to the Hoover I actor Company of Woodland, California, and the Dixie Implement Manufacturing Company of Dallas, Texas, for the use of thiming machines.

Table 1.-Stand Hefore Thinning, Thinaing Heads Used, Number of Replications, and Harvest Method. Mechanical Thinning Field Tiats.

	Trial Number, Location (County or Nearest Town) and Year Conducted										
	No. 1 Butce 1952	No. ${ }^{2}$ Butue 1953	No. 3 Butte 1954	No. 4 Butte 1954	No. 5 vintte 1955	No. 6 King City 1953	No. 7 Davis 1953	$\begin{gathered} \text { Xo. } 8 \\ \text { Davis } \\ 1954 \end{gathered}$	No. 9 Davis 1955	$\begin{gathered} \text { No. } 10 \\ \text { Yolo } \\ 1955 \end{gathered}$	No. 11 San Benito 1954
Beet containing fuches per 100 inches before thinming	31	35	93	-1	38	48	39	37	8	32	40
I himniag heads insel first pass	8×1	8x16/2	$16 \times 7 / 8$	-	$8 \times 13 / 4$	10-2	10-11/2	10-2	10-2	10-2	$8 \times 19 / 4$
sceond pass	$16 x^{20}$	none	none	\cdots	16x/8	201.12	201.1/2	81.2	20 L 仿	2001/2	16x34
Number of replications	$3{ }^{2}$	3	3	3	6	6	6	5	7	6	6
Harvest methol;	M	M	M	M	M	M	H	H	F	M	M

${ }^{1}$ Tnformation not avalable
2 Only 2 replications of machine thinncl plots
3 is machine harvest. I is hand hatvest

Table 2.-.Effect of Thiming Method on Sugar Hect Root Froduction and Gucrose Concentration.

Thinning Method	Trial Number											
	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	No. 11	Average A! Trias
						Tons, Clean Beets Per Acre						
Short hoes	15.5	17.8	18.5	10.8	20.2	32.0	34.0	25.8	30.4	27.1	29.3	2.1
Madhinc	14.7	16.5	17.8	15.3	25.8	28.6	27.5	22.5	24.1	24.7	22.8	21.8
Vachine plus long hoes	15.0	16.9	17.8	13.9	--	--	90.9	24.2	26.8	-	-	
[.5D. 19:12	ne. ${ }^{2}$	3ns.	1 s .	1.7	0.9	1.1	23	2.1	2.1	1.6	1.7	
c.i.	3.2	4.4	5.0	5.3	35	2.7	6.0	6.6	6.6	4.1	19	
	Percent Sucrose											
Shom hoes	17.6	19.9	14.9	16.1	16.2	16.0	19.7	13.1	14.0	13.9	15.4	16.0
Machine	17.3	14.1	14.7	16.4	16.7	15.9	13.8	13.5	14.3	14.9	15.3	15.1
Machine plus fong hocs	17.3	13.9	13.8	16.9	----	--	13.9	13.8	11.0	-	--	
L.50. 19.1	ns.	ns.	- nus	ns.	0.2	ns.	ns.	ns.	ns.	113.	ns.	
c.v.	3.0	1.4	2.9	22	1.0	1.0	2.2	6.7	27	3.1	2.0	

${ }^{3}$ Machine refers to Siver or Dixis dow the-sow type thimer.
*LSD indicates least significant differcnce. NS means not significant. C Pefers to wefficiont of vatiation.

Table 3.-Effect of Thiming Mchod on licet Dump and Labokatory Tare.

	Trial Number											
Thinning Mathod	No. 1	No. 2	No. 3	No. ${ }^{\text {a }}$	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	No. 11	Averase Ill Triak

Tons Tare Dirt Per acre Removed at Beet Dump

Short hers	-	0.81	0.99	5.7	0.98	1,14	\cdots	-	-	1.1	5.8	296
Machine	\cdots	1.28	0.97	59	1.08	1.40	\cdots	-	-	1.2	4.3	230
Machine plus kong hoes	-	0.87	0.94	4.6	-.	- .	--	-	-	\cdots	-	-
1.5D, 19:1	-	0.16	ns.	ne.	ns.	10.08	-	\cdots	-	m.	ns.	

Laboratory Tare Percentage

	,											
Slumt bues	11.1	9.6	6.6	14.1	6.1	$\therefore 8$	-	-	-	10.1	15.5	9.86
Vachinc	12.7	12.2	7.9	14.2	6.7	8.5	-	\cdots	\cdots	11.9	14.1	11.02
Machinc plus long hoes	12.4	10.1	7.6	12%	\cdots	\cdots	--	-	$-$	- .	--	- - -
1.5D. 10:1	ns.	1.8	ns.	ns.	ns.	1.5	\cdots	\cdots	-	ns.	ns.	

Thinning Method	Stand Alter Thiming 4.inch Bect Containing Hocks Per 100 Heet					Percent Row Unoccupiex		Tome Thoots Peatre
	Singles		Pownles	Muhtiples	Total			
Short hoes	112		39	(1)	1.15		0.5	25.8
Long hoes	$6{ }^{6}$		24	29	120		1.8	24.7
Machine	40		29	48	117		7.3	29.5
Nachine plus lons hoes	48		26	20	6		8.7	21.2
Vahhme tines frst	4\%		29	14	112		7.5	21.3
Egnifictut diforence. 19.1								2.1
Pantal correlation eomfioments				- 0.914			-0.49]	
Regression cquation		Y	: 25.270	. 0.129 Xg	0.020	Xm		
		Tral No.9A, Mavis, 19\%5						
Shont Hisw	121		26	f	151		1.6	31.0
Machine	43		:	6.7	111		4.5	24.1
Signiftant diflemete, 19:1								2.6
Pamial mornction coulmetens							0.569	
Regression cquation		Y	22.3082	$0.50 \% \mathrm{Xe}$	-0.10	Xm		
Tral vo. 9\%t, Daves, 1955								
Shote hocs	119		28	4	151		0.4	29.7
Wachine ptus lons hoes	- 50		93	26	109		1.7	468
Sigmfucant difference. 19:1								2.2
Pamtal correlation combicmes				- 0.102		-	0.489	
Regression equaten		-	29.93	0.559 X	- 0.024	Xm		

Short hoes	139	d	0.7	148.7	2.7	29.3
Machime	46	22	15	89	25.0	28
Blocker plus short hoes	89	11	2	109	7.8	23.1
Stenificant difmence, 19 -1						1.7
Fartal comelation combichts			0.489		($0.822^{* * *}$	
Regression cquation		29.	0.190	0.106		

[^1]Iable 4, confimed.

Trial No, ${ }^{\text {a }}$, Butte, 1955						
Shorthoes 187	82	7	226		0.4	29.2
Machine 56	51	38	140		7.9	25.8
Significant difference, 19:1						0.9
Partal comelation coeticients		-0.65\%			0.365	
Regression cquation		- 0. 181	0.073	Xm		

${ }^{3}$ Pathat cotrebtion cocticionts fletive from matiphe germatom af fons per bere on multiples (Xm) and percht wat mocruplet (Xy).
**" Siwnfleant at j percent and 0.1 pereme levels rexpethels.

Table 5.-Effec of Succesive Passes of Down-fherow Thinning warhimes on Linoccupied Low Space.

Thuning Operation	Percon Rest Umocampict	
	Trial No. ${ }^{\text {a }}$	Tral No. 10
Wefore thimumer	4.16	0.75
A ter ist puss	1.2	1.2
Ater 2nd pass	7.9	12.7
Hand lhinnimy	0.4	3.5

 and 16 x 56 to leave $\mid 46$ hect contaning inches per 100 foet.
 inches pre loo feet.

References

(1) Brownime, M, A. 1949. Hudustrial experinentation. Chemical Publishing Co. Inc., Brooklyn, New York.
(2) Drwine, G. Wr. 1924. Estimate of pate occupied as a measure of sugar bect stands. Proc. Amer. Soc. Sugar Beet Tech. pp. 151-156.
(3) Ririe, David, Morsf, M. D. and Hhis, F. T. 1955. Trends and ancomplishments in machine thiming. Spreckels Sugar Beet Bulletin 19-2:12.
(4) Ribie, David, and Hurs, F. J. 1957 . Effect of in-the-row spacing of single double, and multiple plant hills on bect sugar production. Jour. Amer. Soc. Sugar Bee Tech. IX (4): $860-366$.
(5) Iorman, Blon. 195\%. Join the march of machines. V. and I. Cultivator, Spring, pp. 7-10.
(6) Anonymous. 1952. A history-making achicvement. Through the Leaves. XL-4:3-4.

[^0]: 1 Extension Agronomist, Fommerly Assistant Agmomomist. University of Calilomia, Davis, Galifornia; Farm Advisor, Oroville, Gabforna, and farm Advisor, boodland, Cabiforia, respectively.

 Numbers in parentheses refer to literature cised.

[^1]: I able 4 cominume on nos jage.

