Effect of In-the-Row Spacing of Single, Double, and Multiple Plant Hills on Beet Sugar Production

David Ririf: and F. J. Hilles

Abstract

In considering the use of down-therow mechanical thinners, it is important to know the degree that sugar beets will tolerate close spacing in the row. The more plants that can be olocrated without reducing yields, the casier mechanical thinning becomes and the less the chance of creating gaps unoccupied by plants. To leam more as to the effects of high in-the-row populations, three experiments were conducted at Davis, California.

Earlier experiments have shown little or no reduction in beet yield with inthe-row spacings as close as eight inches (1) ${ }^{\text {a }}$ (9) (7). Deming conduded that up 625 hills per 100 feet of row containing 2 or 3 plants could be left on 12 -inch centers without reducing root yicld (2). Later he found that a population containing 25 percent double and 5 percent threeplant hills on 12 -inch centers reduced root yich slighty in comparison with a stand containing 100 pereent single beet hills (3).

With the increased use of mechanical thinners, it was felt that more information should be obtaned as to the effects of close in-the-row spacing of single, double, and muliple plant hills in order to use these machines most effectively.

Procedure

Three field experiments were conducted in succossive years. Sugar beats were planted on beds spaced 40 inches from center to center. The spacing between rows was 14×26 inches. In the trials in 1952 and 1959 , the variety US $22 / 3$ was planted: and in 1954, US 75 was used. Seedlings were thinned by hand to leave the desired population of single, double, or multiple (three or more beets) hills. The single double, and multiple hills were placed in a regular arrangement along the row at approximately equal distances from each other.

In 1052 and 1954, a randomized block design was used. In 1953. a split plot design was employed with nitrogen levels as main plots and populations as sub plots.

Individual plots were two beds (four rows) 60 leet long or, when different fertility levels were cmploycd, four beds 60 fect long.

When fertility was not a variable nitrogen was applied to all plots at the rate of 160 pounds per acre. half applied at thinning and half at mid season. Ammonium nitrate was the nitrogen source used in all experiments. In 1953 , when fertility was a wariable, plots recciving nitrogen received 80 pounds per acre at himning and the balance of the total ratc at mid-season. Sce Table 2 for nitrogen rates. All fertilizer applications were applied as side dressings

[^0]Harvest data were taken from 30 fee of four rows per plot. Four samples were taken from ead plot for sucrose and tare determinations. Beets less than two inches in diameter were discarded before weighing in the 1903 and 1054 experiments. In 1952 , bects with a diameter exceeding approximately one ind were considered marketable.

Results and Discussion

Experiment 1, 1952

Intherow spacing of single and double plat hills and harvest results are indicated in Table 1. Thmod populations as high as 300 plants per 100) fee of row had no apprectable eftect on reot yield, sucose percent or sugar producet. This was true whether the 300 beets were thmed io singles lour inches apart or spacel six inches apart with 50 pereent of the hils containing two bects. Stand counts at havest showed the number of beets in the high population plots had diminished grealy. In the higher populations, a grater perecnage of plants cither died or did not serelop, into marketable bects.

Experiment 2, 1953

This experment was designed to study the influente of different levels of double and multiple hills on sugar protuction at varying levels of soil terility. The originat plan was to ctablish populatons contaiming differem percentages of doubles and multiples in hills spaced eght inches apatt. The secdhing stand. however, was not full enough to acomplish this, so hills were spaced 12 inches apart. Table 2 indictes the populations. nitrogen lesels, and their effects on root yicld, percent sucrose, and gross sugar.

There was a marked respome to nivogen with all populations reacting similarly to the different nitrogen levels. The three populations produced cqually good root viclds, sucrose percentages, and gross momots of sugar.

Fable 3 bings out an interesting eflet of fertility on the ability of these populations to develop marketable beets. There was a signifiont interaction of atregen and popalations in regard to numbers of marketable

Table 1-EXfect of Hill Spacing and Doubles on Root Yick, Perem Sugar, Grow Sugar, and Marketable Beeas. Experiment 1.1052.

[^1]Table s-Ched of Nitrogen and Shand on Root Yeld, Percent Sucrose, awd Gross Sugar Experiment 2, 1053.

Thimned Stand (12 inch conters)				Pounds of Nitrogen Per here				Average Effect of Mintiples ane Dombles
Hect	Mins Per	100 Fec	$\stackrel{\text { B }}{\stackrel{4}{4}}$					
Singles	Doubles	Waltioles		0	90	160	240	
				Tons bects med Acre				
100	0	0	100	22.8	27.1	30.5	3. 1	98.9
62. 5	25	12.5	150	24.3	28.1	A.1	39.4	92.0
25	50	2%	$200+$	22.6	27.5	31.0	31.2	28.1
Avetame cffect of nitrogen				28.1	27.6	30.8	82.3	

 effect of multiples and atoubles. no

				Peremt Sucrose				
100	0	0	100	15.3	1.3	14.7	13.9	14.8
02.5	25	12.5	150 -	13.6	15.4	14.8	14.1	15.0
25	50	25	$200+$	14.4	15.2	14.8	14.0	14.8
Areage efren of minogen				1 m 4	15.3	14.8	14.0	

						oss su	er Ac	
100	0	0	100	3.40	4.15	412	4.69	4.15
62.5	25	12.5	150	3.80	4.31	4.60	4.5%	4.32
25	50	25	200	3.47	1.19	4.60	4.85	4.15
Average effect of nitrosen				8.36	1.21	4.51	4.51	

 - feet of mulliples and doubles- ns
 Fontaincl more

Thimnet Stand (12" Cenlers)			Total Hects per 100 Fect	Pmonds of Nitrogen Per Ane				Arerase Effect of Multiples and Donbles
Hect 1 Hins Per 100 Fece								
singles	Doubles	Mathiples		0	80	160	240	
100	0	9	H0)	96	100	9	101)	9\%
62.5	25	12.5	156m	123	138	185	13	145
25	50	23	$200+$	14.8	114	163	160	158
Averame Simozen ufect				122	134	193	192	

[^2]beets at haten. When beets were thimed to a single phan every 12 inches. increasing soll fertility had no effect on the wumber of marketable bects. There was essentially no change in plant population from thinning to harvest. But when doubles and multiples were left, increasing soil fertility had a definite effect on marketable beets. More marketable beets developed under crowded conditions then the plants reeved nitrogen than when nitrogen was not added. The lact that this differential cflect was not reflected in root yields is readly explaned. It is well established that beet root yidds are not apprecably improved by sacing plants doser than 12 inches in the row (1). Since none of the stands in this experiment eonsisted of planes spaced more than 12 mohes apart, higher popptations would not be expected to increase yidels.

Experiment 3. 1954

This experinent contained the same population as in 1953 , but, to further test the effects of high populations, sands containing the same percontages of dombles and multiples were also established at cight- and fourmoh centers, Table 4 shows the number of hills and total beets per 100 feet of row left at thinning.

In this trat, Table s, there were highly signifoan interactions between perentages of doubles and multiples and hill spacing with respect to mot yield and gross sugar. High percentages of double and multiple hills on 12 inch centers did not reduce vields. On eight inch centers, the highest population, 25 percent multiple sud 50 perent double plant hills. reduced root yield by 1.8 tons per acre. On four inch conters both levels of doubles and multiples reduced yiclds nearly four tons per acre. This is perhaps the most important effect obsered in the experment and is the besis for considering precision planting of sugar beets in hills (6).

Table 4,-Hercentage of Singlen, Doubles, and Moltiples, Hills Per 100 Fect and Total Piants Per 100 Feet, Experiment $3,1954$.

Thinned Stand Percent Hills Containing:			Hille Per 100 Eect			Total Plants Per 100 Fec
Singles	Doubles	Multiples	singles	Doubles	Multiples	
12.indi Centers						
160	0	0	100	0	0	100
62.3	25	12.5	62	25	13	$150-$
25	50	23	25	80	25	$200:$
8-Inch Centers						
100	0	0	130	0	0	130
62.5	2	12.5	9	87	19	227
23	30	25	37	75	97	$300 \cdot$
4-Huch Centers						
100	0	0	300	0	0	300
62.5	25	12.5	187	75	. 37	450
25	30	25	73	150	75	600

[^3]Table x - Fifer of Hin Spacing, Doables and Wuhphes on Root vela, fercent Sugax and Gross Sugar Reperiment 青, 1954 .

Thimed Stand Percan Mins Comtaintug:			Hil Suacing (Inchex, Center to Cemer)			Average Lefect of
Singlos	Dowhles	Muliples	12	8	4	and Donhles
		Toms Mectis Per Acre				
100	\%	$1)$	2977	22.2	21.2	230
625	25	12.5	21.8	21.8	12.8	20.3
25	50	25	22.2	20.6	17.4	20.2
tratage	apacing eltor		29.2	21.4	18.7	

 n.8: atemate eflect of spacing- 0.8
fercent Sucrose

100	0	0	16.7	17.0	17.0	16.9
625	25	12.5	16.1	16.9	17.2	16.9
25	30	25	16.8	16.7	17.8	16.9
lverage spacing ufect		16.6	16.9	17.2		

 elfect of mbltiples and thoblesem ans.

		Tons Cross Sugar Per Aere				
100	0	4	3.79	3.75	1.62	3.72
62.5	23	123	3.58	9,61	298	3.59
25	\% 0	25	3.79	3.48	3.61	3.41
, Verame	ing		3.75	3.62	3.21	

Single plans spaced four inches apat roduced root yokd by lis tons per acre compared to those spaced 12 hnches. This was mot obsorved in 1902. A possible explanation ol the condicting vesules might be the fact that in 1902 all bets greater than one inch in diancter were weighed while only those greater than two inches were induded for yeld detemmations in 1954. Tinfortunately, these umarketable beets were not counted or weighed in cither of these trials. Other data have been obtained, however, indicating that trom one to two tons of mots per ace are lost through disarding beets wo inches or less in diameter (6).

There was an avenge imorease of a 0.6 sucrost percentage pone with the coser hill sasings. Athough the intemation of hill spache whth multiples is bot significamt at the \% percent level, the incrase is greater as hill spamy is decreased with stamd containing doubles and multiples than when single plant stands are compared at dilferent hill spacings.

Thble 6 indicates that, as in the 1952 experiment, many plants do not develop into marketable bects when stands are thick. It is Felt that many beets were disearded as "unmarketable" in the 195% and 1954 experiments which actualls would have been recovered by commerciat harvest. Consequently these results may be somewhat biased in favor of lower populations.

Table 6.-Effect of Hill Spacing, Doubles and Multiples on Marketable Beets. Experiment $3,1954$.

Thinned Stand Percent Hills Containing:			Hill Spacing (Inches, Center to Center)		
Singles	Doubles	Multiples	12	8	4
			Total Plants Per 100 Feet at Thinning		
100	0	0	100	150	300
62.5	25	12.5	$150+^{1}$	$225+$	$450+$
25	50	25	$200+$	$300+$	$600+$
			Marketable Beets at Harvest ${ }^{2}$		
100	0	0	82	. 111	181
62.5	25	12.5	106	151	187
25	50	25	141	171	191
			Marketable Beets as Percent of Plants at Thinning		
100	0	0	82	74	60
62.5	25	12.5	$71-1$	67 -	42-
25	50	25	71 -	$57-$	$32-$

[^4]
Summary and Conclusions

Three population experiments were conducted in which an attempt was made to assess the effects of various percentages of double and multiple (three or more beets) beet hills in the stand upon sugar beet production. From these studies the following ideas evolved:

1. Sugar beets spaced evenly showed little yield variation over a range of 4 to 12 inches between singly spaced beets.
2. Fifty percent doubles introduced into stands of beets evenly spaced at 6 or 12 inches did not cause yield reductions.

3 . When hills were spaced rather evenly at 12 -inch centers, there were no differences in root and sugar yields among populations containing 100 percent single plants, 25 percent doubles and 12.5 percent multiples, or 50 percent doubles and 25 percent multiples.
4. At an 8 -inch hill spacing the yield was reduced 1.3 tons per acre when 50 percent doubles and 25 percent multiples were included in the stand.
5. At a spacing of four inches between beet hills, the introduction of doubles and multiples resulted in a yield reduction of 3.8 tons per acre.

From a practical standpoint it appears from these studies that as long as hills are spaced 10 to 12 inches apart, large percentages of doubles and multiples can be tolerated. This suggests that hill planters designed to drop several seed units close together at 12 -inch centers or the use of down-therow thinners with larger knives on the original pass through the field may be successful in reducing or eliminating thinning costs without lowering yield.

References

(1) Coons, G. H. 1948. Space rehaionships as athecting yield and quality of sugar bects. Proc. Amer. Soc. Sugat Bect Pech. pp. 252-268.
(2) Deange, G. D' 1947. Effect of multipleplam hills on yields and quality of sugar beets. Proc. Amer. Soc. Sugar Beet 1 Ped. pp. 17.53. Westem Regional Mecting.
(3) Dexme; G. W. 1950 . Plan population experiments with sugar beets at Fort Gollins, Colomdo Proc. Amer. Soc. Sugar Beet Tech pp. $256-260$.
(4) Doxtatok. (. W, and Skebrkna, I. W. Wht Beet population studics. Broc. Amer. Soc. Sugh Bet lech. pp. 157-162.
(9) HRAkEs, N. © 1948 . Efect ol spacing amd toubles on yield of sugar beets in the Mihhan area Proc. Aner. Soe. Sugar beet Tech. pp. $209-270$.
(6) Ridie, Davin, Hims, F. J, and kpave, K. A. 1957 , prehminary evaluation of precision hill planing of sugar bects. Joar . Ince. Soc: Sugar Beet Ted. IX (A): $316-820$.
(7) Tombas. Brox. 1946. Population and discribution sudies with sugar beets. Proc. Amer. Soc. Sugar Bect Tech. pp. 177-18t.

[^0]: ${ }^{7}$ Formerly Assistant Agronomist and Extension Agronomist, respectivelv, Liviversity of Galifomia, Davis. Califomia.
 $*$ Numbers in paratheses refer to literature cited.

[^1]: ${ }^{1}$ Bects farger than I info in diamoto
 2 Not simnificant

[^2]: a beets larger lhan 2 inches in dmaneter

[^3]: 1. Dechmal vanes bave bece roundee of to whote hils.
 a See hoomote I Table 2.
[^4]: ${ }^{1}$ Minimum number, multiple hills calcuated at 3 piants per hill but often contained more. Hence the + and - markings.
 ${ }^{2}$ Beets larger than 2 inches in diameter.

