Identification of Genetically-Superior Individuals and the Prediction of Genetic Gains in Sugar Beet Breeding Programs ${ }^{2}$

LeRoy Powers ${ }^{2}$

The identification of genetically- superior individuals and the prediction of genetic gains should add materially to the effectiveness of the breeding programs with sugar beets and other crops. The purposes of this article are to present methods and formulas used to identify genetically-superior individuals and to predict genetic gains in segregating and heterogeneous populations. Applications of these methods and formulas are illustrated.

Literature Review

Wright $(28)^{3}$ discusses the genetic principles governing the rate of progress of livestock breeding. These principles are equally basic to plant breeding.

Dickerson and Hazel (3) and Lush (11) have developed methods and formulas for predicting genetic gains applicable to animal breeding. Robinson, Comstock, and Harvey (21) and Robinson, Mann, and Comstock (22) developed somewhat similar methods and formulas for predicting genetic gains in plant breeding.

The immediate genetic theory basic to the development of the methods of identifying genetically-superior individuals has to do with the partitioning of variance into its components and the partitioning method of genetic analysis. This is also true of the methods used in predicting genetic gains.

Fisher (4) was the first to provide a statistical method of partitioning variance into its environmental and genetic components. Fisher, Immer, and Tedin (6) elaborated on this method and gave several formulas for further partitioning genetic variance, using barley data to illustrate the application of the formulas. Wright ($24,25,26$, and 27) independently developed formulas and methods for studying variance components. These methods have been applied and extended by research workers in the animal and plant fields (see Lush, 11; Comstock and Robinson, 1; Robinson, Comstock, and Harvey, 19 and 20; Mather, 12; Lerner, 9; and Powers, 17).

Powers (14, 16, and 17) and Powers, Locke, and Garrett (18) have presented methods and formulas in addition to the above that are basic to the methods presented in this article for identifying genetically-superior individuals and predicting genetic gains in segregating and heterogeneous populations.

Lerner and Hazel (10) applied the method developed by Dickerson and Hazel (3) to egg production in poultry. The predicted gain per bird

[^0]per year was 5.28 eggs and the actual gain was 5.6 eggs per bird per year. It is obvious that the agreement between the rate of improvement expected from selection and that obtained is remarkably close.

Materials and Experimental Design

The characters studied were percentage sucrose and weight per root in sugar beets (Beta vulgaris L.). The experiment was conducted during the growing period of 1955 .

Six populations were included in the study. The F_{1} hybrid resulted from crossing two inbred lines, $50-406$ with $52-307$. GW359-52R is the variety being grown by farmers producing beets for the Great Western Sugar Company in the Rocky Mountain Region. SP 53104-0 is a United States Department of Agriculture production under development as a variety carrying resistance to curly top and leaf spot. US 201 is not a commercial variety but a closebred strain extremely high in leaf-spot resistance and is very valuable as a parent to furnish genes conditioning resistance to the organism causing this disease. The inbred lines 50-449 and 52-305 were produced by the late G. W. Deming. The exact number of generations of inbreeding is not known. However, Mr. Deming stated that $52-305$ had resulted from many generations of inbreeding and was included in the studies because he believed it to be relatively homozygous.

Inbred line 52-305 and the F_{1} hybrid were included in the experiment to obtain a measure of environmental variability and to furnish some measure of the reliability of the methods used. The inbred line $50-406$ has recessive-green hypocotyls and $52-307$ has dominant-red hypocotyls. Hence, the F_{1} plants produced by seed harvested from $50-406$ could be identified by hypocotyl color. During thinning, the green hypocotyl plants were eliminated, thus insuring that only F_{1} hybrid plants were left. At the time of harvest, all roots were found to have pink buds, and in this manner the F_{1} cultures were checked for possible self- or intra-fertilized plants.

In planting the different cultures of the experiment, the rows were spaced 40 inches apart and subsequently the beets were thinned to a spacing of 20 inches between beets within the row. The wide spacing between and within rows was used to minimize competition between beets. At time of thinning each culture was reduced to 12 plants and only 8° plants were harvested per culture. Any beets showing visual evidence of disease, either before or after being pulled, were discarded.

The field design of the experiment was a randomized complete block composed of two parts. The first part included the six populations listed in Table 1, and the second part included 52-307 in place of the F_{1} hybrid. The first part was composed of 20 blocks and the second part of 60 blocks. Since, for the second part of the experiment, eight roots were not available for all plots the number was reduced, by random elimination, to six before analysing the data. Hence, there was a total of 160 plants per population available for statistical analysis in the first part of the experiment and 360 available for analysis in the second part of the experiment. Five of the populations occur in both parts, making a total of 520 plants for these populations. The present article reports on the analysis of the populations involving 160 individuals and those involving 520 individuals.

Table 1-Population Frequency Distributions Expressed in Percentages for Percentage Sucrose a

Population	Upper limit of class in Percent														
	$\begin{aligned} & E x \\ & = \end{aligned}$	$\underset{8}{8}$	$\begin{aligned} & 10 \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{8}{8}$	$\begin{aligned} & \mathrm{e} \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & \because \\ & E \\ & \hline \end{aligned}$	e9 $=$	$\stackrel{\text { E }}{8}$	\%	8 0		$\underset{\underline{v}}{E}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	\%	$\begin{aligned} & 8 \\ & E 2 \end{aligned}$
	\%	\%	$\%$	$\%$	$\%$	$\%$	$\%$	\%	\%	0	$\%$	$\%$	$\%$	$\%$	c
Fi hybrid						1.9	7.5	21.9	11.4	28.8	15.6	8.7	1.2		
CW359-52R		0.6	0.6	1.9	0.0	8.8	10.0	15.6	21.9	14.4	13.1	5.0	3.8	25	1.2
5 P 51040	1.2	2.5	5.0	1.9	8.7	8.1	14.4	21.9	11.2	14.4	6.9	3.8			
US 201	1.9	2.5	6.2	5.6	8.8	15.6	20.6	19.4	5.0	8.1	3.8	0.6	1.9		
50×140	0.5	25	5.0	7.5	8.1	21.3	20.6	18.1	7.5	5.6	1.3	1.9			
52.305					0.6	6.9	12.5	18.8	25.6	23.1	11.9		0.6		

${ }^{1}$ Number of plants per population $=160$.
a The percentage of any given frequency dismbution codoced in brakets is the propothon identice as gencticaly superion.

Idemification of Genctically Superior Individuals for Percentage Sucrose

The frequency distributions of the populations for perconage sucrose having N values of $t 60$ are fisted in lable 1 . In reality identification of geneticall-superior individuals and the prediction of genctic gains involve analyses of these frequency distributions. The frequency distributions are expressed in percont rather than number of plath, and the upper limits of the classes are given. By so doing the analyses of the data are facilitated.

One of the first steps in analysing the frequency distributions is to partition the variances into their components. To do this it is necosary to have a ncasure of the environmental vatibility. Inbred line $52-505$ and the F_{i} hybid $50-406 \times 52-807$ were induded in the experiment to meatare the onviommental varibility. An exammation of lable I reveals that the ranges (number and walues of chasss in which individunls occur) are not grealy diferent for the frequency distributions of 52.305 and the $F_{\text {, hyberd }}$ and are onsiderably less than those for the other populations. It appears that cither, or both, of these populations furnish a satisfactory estimate of the envirommental sariability. Whether this assumption is conect will be determined as the analyses of the data proced. For perentage varoove, data from inbred $32-305$ are used to estmate the enviromental vatiance and those from the F, hybrid to give a pratical check on the methods and formulas employed.

It is important to detemine which populations have genctic rarances. Those not showing any genetic variability would not be expected to possess any genetically-superior individuals nor would genctic gains be possible by breeding within hem. Hence, the data from 52905 and the F_{i} hyrod compared with the data from the segregating populations serve somewhat as a practical theck on the reliability of the methods omployed to identify genetically-superior individuals and w predia genetic gains.

The mons, coal wariances, and genelic variones of populations for percentage suctose are listed in Table 2. The information in this table indicates whether there are diferences between means of prpulations, in which populations genetically-supecior individuals ocour, and fanally in which poputations it is possible to make genctic gains by application of suitable breeding methods.

As given by foonote 2 of Table 2 the F value obtance by amalys of variance is 2118 for diferences between means of populations. Ithat required for significance at the one pereent level is t.10. There are diferences between means of populations as reguct perentage sucrose. At teast the meann fall into two classes; the 1 , hybid, GW39-5gR, ant 32805 com prising onc dass, and SP 5310t-0, US 201, and 50-419 comprising the other class.

The wat varance of 52905 listed in Table 2 is used as an entimate of the envirommental varimec. The genetic variances listed in the fourth column of this tabie are obtaince by soburacting this estimate (1,158s) from the total variances of column 3 .

A comparison of the genetic variances with their standard errors reveals that all except the variance of the 1 ; hybrid are significantly different from zero. The estimated genetic variance of the F_{1} hybrid should not be significantly different from ecro if both parents are relatively homozygous. This confirms that either $52-305$ data or the data of the F_{1} hybrid, or both, are suitable for estimating the environmental variability of percentage sucrose.

Table 2.-Means. Total Variances, and Genctic Variances for Percentage Sucrose and Populations:

Population	Mcan ${ }^{2}$ Sucrose	Variance ${ }^{3}$	
		Total	- Genetic
Percent			
Filhybrid	12.8	$1.2578=0.1411$	0.1045 ± 0.1914
6W359-52R	12.5	$2.9929-0.3357$	1.8396 ± 0.3597
SP 5310-1-0	11.3	3.7125 ± 0.4164	2.5592 ± 0.4360
US 201	10.7	3.7695 ± 0.4228	$2.6162=0.4421$
50-449	10.7	2.6376 ± 0.2958	1.4813 ± 0.3229
52-305	12.3	$1.1533-0.1293$	- - -

[^1]In identifying genetically-superior individuals it is assumed that the proportion of individuals in cach class of Table 1 can be estimated and the deviations of the estimates from the obtained frequency distributions will not be greater than expected by chance. This assumption can be tested for the $\mathrm{F}_{\text {, }}$ hybrid and $52-305$ populations by testing for agreement using the chi square frequency distribution. The means of the population under consideration, the standard error calculated from the environmental variance (variance of $52-305$, see Table 2), and P'arson's (13) normal probability tables are employed. For details of the method sec Powers (15) and Leonard, Mann, and Powers (8). For both of these populations the deviations from the calculated and obtained freguency distributions are no greater than expected due to chance. Wil of the data necessary to carry out the calculations are given in Tables 1 and 2.

The finding that the frequency distributions based on environmental variation can be predicted within the limits of random sampling, justifics, procecding with the analysis pertaining to the identification of individuals genetically superior and to prediction of genetic gains. To do this it is necessary to determine an upper class beyond which the odds are great that individuals will not occur duc solely to environmental variability. That is, the odds are great that the individuals occurring beyond the upper limit of
this class are genetically superior to the average of the population. Stated in still another way these individuals have values greater than those delimited by chance fluctuations due to the environmental variability. The methods and formulas used in determining the upper limit of the class beyond which only individuals genetically superior to the average of the population would be expected to occur are given in a previous publication (Powers, 16). Certain minor modifications and extensions of the use of these methods and formulas are necessary in identifying genetically-superior individuals and in predicting genetic gains. Therefore their application to percentage sucrose will be given in some detail.

The formula for predicting the mean of sub-group frequency distributions is $\mathrm{y}=\mathrm{z}-\mathrm{s}_{\mathrm{d}} \mathrm{x}^{\prime}$ (Powers, 16). In identifying genetically-superior individuals the z values given in Table 3 are obtained by application of the formula $\mathrm{z}=\mathrm{x}+s_{\mathrm{d}} \mathrm{x}^{\prime}$. This formula is easily derived from the formula $\mathrm{y}=\mathrm{z}-\mathrm{s}_{\mathrm{d}} \mathrm{x}^{\prime}$, in which X is substituted for y . In the application of these formulas the symbols used and those given in Table 3 have the following connotations.
$\mathrm{y}=$ predicted mean
$\mathrm{x}=$ obtained mean
$z=$ upper limit of class
$\mathrm{s}_{\mathrm{d}}=$ estimated standard error calculated from the environment variance of 52-305 (total variance of Table 2).
$p=1-q$
$\mathrm{q}=1 / 2(1+\mathrm{a})$ Pearson's (13) tables
$\mathrm{x}^{\prime}=\mathrm{x}$ of Pearson's (13) tables

Table 3.-Percentage of Identified-Genetically-Superior Individuals and Estimated Means of Sub-Group Frequency Distributions in Which These Individuals Occar For Percentage Sucrose and Populations ${ }^{1,2}$.

Populations	$\begin{aligned} & \text { Value of } \\ & \mathbf{z} \text { for } p \\ & =0.003 \end{aligned}$	Value z Used	Superior Individuals ${ }^{3}$	$\begin{aligned} & \text { Value } \\ & \text { of } \\ & \mathrm{x}^{\prime} \end{aligned}$	Mean			
					$\underset{\bar{X}}{\text { Obtained }}$	Predicted, y		
						Superior Individuals ${ }^{3}$	12.5\%	37.5\%
	Percent	Percent	Percent		Percent	Percent	Percent	Percent
F_{1} hybrid	15.70	15.75	0.0	-	12.8	-		
GW359-52R	15.40	15.75	3.7	1.79	12.5	13.8	14.5	15.4
SP 53104-0	14.20	14.25	3.8	1.78	11.3	12.3	13.0	13.9
US 201	13.60	14.25	2.5	1.96	10.7	12.1	13.0	13.9
50-449	13.60	14.25	1.9	2.07	10.7	12.0	13.0	13.9
52-305	15.20	15.75	0.0	-	12.3	-		

[^2]In identifying genotically-superior individuals it is necessary to determine the value of p to be employed. The value of p that should be used is dependent upon the number of individuats in the population and the intensity of the selection to be practiced. Another way of stating the problem that may help to clarify this point is as follows: The decision as to what value of p to use is based on the namber of individuats the investigator wishes to select for further study and breeding, and the number of genctic-ally-superior holividuals it is possible to identily in the population under consideration.

For example, if a p value of 0.003 is cmployed, as shown previously the value of 2 may be alculated from the formula $y=x \quad s_{4} x^{\prime}$. The at culations for GW859-59R are as Eollows:

$$
\begin{aligned}
x= & 12.5 \text { (see Table } 3 \text {) } \\
s_{d}= & 1.0739 \text { (sec footnote of Table } 2 \text {) } \\
p= & 0.003 \text { (chosen value) } \\
q= & 0.097 \text { (1-p) } \\
x^{\prime}= & 2.70 \text { (value of } x \text { in Pearson's (} 133 \text {) thbles for } \frac{1+4}{2} \text { equals } 0.997 \text {) } \\
x= & 12.5 \quad(1.0739 \times 2.70)=15.40 \text { as given in the second column of } \\
& \text { Table } 3
\end{aligned}
$$

The valucs of a for the other population given in the second column of Table 3 are calculated in a similar manner.

Since, in this example, p was chosen as 0.008 only one individual in a population of 383 would be experted to cyual or exced the walue of 15.40 percent sucrose. Hence, the probability of two individuats in a population of 100 excecling 15.50 percen sucrose is rery small. Consequenty the p value of 0.008 should be stisfatory for studying the frequency distibutions of Table 1 providing, due to genctic superiority, there are a suftent mumber of individuals exceeting the value of a used

The value of a as calculated above setfom comesponds to an upper class limit, as is necessary to identify the genetically-superior individuals in frequency distributions such as those listed in Table 1. From an examination of the frequency distribution of GW85952R given in Table 1 it can be seen that the calculated z value (1540) lahls into the class having an upper limit of 15.75 percent sucrose. Hence, the value of a selected is 15.75 as shown in the third column of Table 3 . The other values of + listed in the column were determined in a similar mamer. It should be pointed one that If the investigator desires to work with calculated values of 2 , such as 1 lato. he can do so by referring to the data from which the trequency distributions were compiled.

The value of 3.7 listed in the fourth column of Table 3 is the percentage of individuals in the tequency distribution of GW35052R that exceded 15.75 percent sucrose. As the lourth column heading indicates, the percentages listed undex it are those cumblated for all the dasses whose upper limits exceed the walue of a used.

For GW30952R, the number of individuals having an upper class limit preater than 15.75 is 6 (3.7 percent of 160). The chances are very good that all six of these indivituals are genetically superior as regards percontage sucrose, and it is reasomably certain that at leas five of them fall into this ategory. By labeling all bects at time of harvest with culture and plant number these individuals an be selected for further use in the breding program and for further studies.

It is apparent that the perontages histed in colum 1 of Pable 8 are the proportions of identifablegenctically-supertor individuals in the respective populations. Is stated previously, if the bets are labeled at time of barvest the procedures and calculations ontined provide a means of identify ing some of the genctially-superior individuals. It is equally apparent that these are not all the genciatly-superior individuats in the population. In all probability they are not even a preponderant proportion of surh individuals.

Predicting Genctic Gains in Percentage Sucrose

The percentages of identifiablegenetically-superior individuals listed in the fourth column of table 3 provide a basis of predicting genctic gains in percentage suctose. It is clear that these individuals are members of a subgroup frequency distribution having a mean larger than that of the population in which they occur. Envirommental variability and probably to some extent genctic variabilty are causing them to fluctuate and hence form a sub-group within the pepulation Frequency distribution. The problem has resolved into one of estimatig the means of these sub-yroup frequency distributions of whid these genetiolly-superior individuals are members.

The formula employed to predict the means of these subgroup thequency distrbution is $y=3-s_{0} x^{\prime}$ (sce Powers, 10) and the commations of the symbols are an given previously in this artiele. The number of individuals in this sub-group frequency distribution is not known, and therefore the proportion that the genctially-superion fadividuals are of this subgroup is not known. However, what proportion they are of the respective populations in which they occur is known. For GW 359.52 R a he identifable-genetically-superior individuals constitute 3.7 percent of the poppulation.

Using the percentage for GW5 5922 R a conservative estimate (underestimate) of the sub-group mean can be chloulated. As stated above, the formula employed is $y=x-s_{4} x$ '. 'The alculations are as follows: Gonverted to decimal frations the proportion of gencticaly-superior indivituals is 0.037 . This is the value of p . The value of q is 1 p, or 0.963 , and it is designatel as $1 / 2$ (0° a) in Pearson's (13) tables Is taken from Pearson's tables the corresponding whe of x^{\prime} ' is 1.79 . The x^{\prime} values for all populations are listed in the fifth column of Table 3 . The value of z used for GW $859-52 \mathrm{R}$ is 15.75 (see Table 8). This is a conservative estimate of 2 because, as an be determined from Table 1, 1.2 percent of the population exceded 16.50 percent sucrose. By substituting the proper values in the formula given at the begiming of this paragraph, $y=15.75-(1.79 \times 1.0739)$. By completing the calculations a value of 18.8 percent sucrose is obtained, as listed in the seventh column of Table 3. The predicted genetic gain in
percentage sucrose for GW359-52R is 13.8 minus 12.5 (column 7 minus column 6), or 1.3 percent. The values for the other populations are calculated similarly.

The values listed under columns 8 and 9 of Table 3 (heading 12.5% and 37.5%, respectively) were obtained by substituting 12.5% and 37.5% for the values of column 4 of Table 3 and carrying out the calculations as given in the immediately preceding paragraph. The values listed in column 9 compared with the obtained means (column 6) represent maximum genetic gains that may be possible by breeding within the populations listed in Table 3. The genetic levels that can be reached for these populations, by appropriate methods of breeding, probably lie somewhere between the values listed in column 7 and those listed in column 9.

The values for percentage sucrose listed in column 7 of Table 3 compared with those given in column 6 show the expected genetic gains based on a conservative estimate of the means of the sub-group frequency distributions. These gains for the populations starting with GW359-52R and going down the table in order are $1.3,1.0,1.4$, and 1.3 percents, respectively. The increases expressed as percentages of the obtained means are $10.4,8.8$, 13.1, and 12.1 percents, respectively.

Identification of Genetically-Superior Individuals and Prediction of Genetic Gains for Weight per Root

The methods and formulas used in the identification of geneticallysuperior individuals and to predict genetic gains for weight per root are essentially the same as those for percentage sucrose. The differences that do exist are attributable to the positive relation between the means and environmental variances for weight per root. Hence the variances of the nonsegregating populations cannot be used directly as an estimate of the environmental variance for the segregating populations. For such characters as weight per root, regression may be used to estimate the environmental variances of the segregating populations (see Powers, 14). This method of estimation assumes a straight line relation between the means and environmental variances. Consequently, to employ this method two points on the line are essential. In the present study these are furnished by the means and variances of the F_{1} hybrid and inbred line 52-305. When studying characters that exhibit heterosis, such as weight per root, it is desirable to include at least one F_{1} hybrid and at least one inbred line. This usually assures that two rather widely separated points on the regression line will be available for estimating the environmental variances of the segregating populations.

The population frequency distributions for weight per root are given in Table 4. The smallest range is for $52-305$ and the greatest range is for GW359-52R. The range for the F_{1} hybrid is considerably greater than that for $52-305$ and the frequency distribution lies in classes having a greater weight per root. This is to be expected if both the mean weight per root and the environmental variance are greater for the F_{1} hybrid. As was the case for percentage sucrose, the identification of genetically-superior individuals and prediction of genetic gains for weight per root involve analyses of the frequency distributions which are listed in Table 4.

Table 4.-Population Frequency Distributions Expressed in Percentages tor Weight Per Rootr, ${ }^{2}$.

Population	Upper Limit of Class in Pounds																
	$\begin{aligned} & e_{0}^{8} \\ & =8 \end{aligned}$	5	8	$\underset{\infty}{\stackrel{8}{\infty}}$	$\underset{\infty}{*}$	$\frac{8}{7}$	$\stackrel{y}{4}$	$\stackrel{8}{8}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\stackrel{8}{E_{i}}$	$\underset{x}{x}$	$\frac{8}{8}$	$\stackrel{N}{0}$	$\stackrel{\bar{B}}{\stackrel{B}{E}}$	$\stackrel{Y}{=}$	$\begin{aligned} & 8 \\ & 8 \\ & -i \end{aligned}$	$\begin{aligned} & \mathrm{BA} \\ & \mathrm{~A} \mathrm{~A} \end{aligned}$
	$\%$	$\%$	$\%$	$\%$	$\%$	\%	$\%$	$\%$	\%	$\%$	\%	\%	$\%$	\mathscr{F}	\%	\%	\%
Fehebrid				7.5	13.1	23.0	21.9	16.3	100	4.4	1.2	0.6					
6ws5932\%		1.9	0.6	1.9	3.7	11.9	12.5	13.1	12.5	10.0	10.6	8.8	4.4	5.0	0.6	0.6	1.9
SP 53104.0			4.4	10.6	13.1	24.7	16.9	16.3	6.9	6.2		1.2					
Ls 201	3.1	11.3	15.0	26.9	18.8	14.4	8.1	0.6	1.2	0.6							
$50-449$		5.6	11.3	38.8	23.8	16.2	6.2	1.0			$\longdiv { 0 . 6 }$						
52-305		3.1	45.7	45.0	3.6	0.0						.					

[^3]Again, as for percontage sucrose, the analyes of these irequency distributions for weight per root assume that the proportion of individuals in the different chases of the freguency distribution an be estimated by cmploying Peatson's (19) nommal probability tables and fommulns given by Powers (16). These fommas for calculating the theoretion frequency dis thbutions make use of the obtained means and covirommental standard crors. Whether the calculated theoretical proportion of individuals the the different chases agrees with those obtamed tan be dotemmed for the F, hybrid and 52.305 populations. For both populations aplicathons of chi square for aspement reveated that the deviations between the obtained and calculated proportions in the dillerent classes of dhe frequency distributions we no greater than expected by chance. All the data necessary for making the test are given in Pables 1 and 5 . This funding justifies proceeding with the analyses of the data.

The means, total varances, whineculture varances within-culture envirommental variances, and whim-culture genetic variances for weight per root are listed in lible 5.

Tahe 5,-Mcans, Total Variances, Within Cuture Toal Vamances, whin Cutture Envirommental Variances, and whin Culture Genetic Varmen for Weght Per Root and Poprlations:

Population	Mean	Variance			
		Total	Within Caltures*		
			Total	Environmental	Genetic
	I bs.				
Fs hybred	4.74	1.1194 ± 0.1502	$1.0145 \geq 0.1827$	1.0145 ± 0.1327	- - - - -
CW359.52\%	6.41	3.1248 ± 0.5748	5.0596 ± 0.6529	1.5720 ± 0.2182	8.4867 ± 0.0723
SP 591040	4.76	$1.9320=0.2189$	1.7879-0.1871	$0.9460-0.1296$	0.8410 ± 0.1634
US 201	2.94	$1.6270+0.1825$	1.4801 ± 0.1992	0.4190 ± 0.0810	1.0608 ± 0.1841
54.49	3.00	1.1246 ± 0.1261	1.0199 ± 0.1780	0.4417 ± 0.0700	0.572 ± 0.1688
52.305	2.99	$0.2369+0.0268$	$0.1825+0.0874$	0.1825 ± 0.0374	- .-.

[^4]The t test in which standard croors were calouktad for each population from the data within each population shows that there are significat differences betwecn metms of populations. However, since there is a positive relation between the means ame varances, the resulte from the analysis of variance mast be interpreted with this in mind. The amalysis of variane bogether with the results from the t test seem fo justify the following conclusions. The f values obtaned from an analysis of variance led the same conclusions. The meme compose four levels of weight per root; GB59-2 2 R composes one level, the F, hybrid and SP 5 Sl04- wother, $4 S 201$ and $50-449$ another, and 52.805 the lourth level.

There are four different colomens of mances histed in Table 5 . These are given of illumate the difference in estmating the genetie variances for percentage sucrose in which there is no rolaton between the means and covirommental varinces and weigh per root in which there is a positive rektion between the means and variances.

It will be remembered that in Table 2 the genctic variances were calculated by subtrating the toal variance of $52-906$ from the wal variances of the other populations. The variances given in the sad column of Table 5 correppond to the variances given in the thind column of Table 2. The within-culture total varances given in the fourt colum of Table 5 were calculated from the eight plants of cach culture of a given population. The crors were calculated by standard methods using the 20 estimated variances for a given population. It is interesting to note the rather close agreement between the errors for the total wriances (column 3) calculated by use of Fisher's formula (o) and those (column 4) obtamed from the data for the withinculture total varances.

Likewise the whin-calture envirommental varances (column 5) were calculated on the basis of cultures, and the standard croors were obtaned by use of standard methods applied to the 20 samances of a given population. Finally, on the basis of cultures, the withinculture genctic variances were calculated by subtracting the corresponding within-culture covironmental varance from the within-culture total variance. Again the standard cror for any given population was calculated from the 20 genetic variances so estimated.

Table 6-Drecentage of Identified-Genctically-Superior Individuals and Estimated Means of Sub-Group Frequency Dismibutions in which These Individnals Oceur for Weight Per Root and Population'.

Populator		$\frac{\square}{5}$		曅	Mcan			
					$\begin{gathered} \text { Ontained } \\ x \end{gathered}$	Predicted, ${ }^{\text {\% }}$		
						Supenior mathi. duats	12.5%	37.5\%
	Lbs.		$\%$		Lbs.	Lbs.	Lhs.	Lbs,
Fibubrid	9.00	1.1914	0.0	-	4.74	\cdots	\cdots	\cdots
CW359-32R	11.25	1.4971	2.	1.90	6.44	8.32	9.58	10.77
SP 3 3104-0	8.25	1.1348	1.2	225	4.50	3.68	6.92	7.88
U5 201	5.25	0.7410	2.4	1.97	2.94	3.74	4.40	5.01
50.449	6.00	0.7884	0.6	2.49	3.09	4.04	5.09	5.75
52.305	4.50	0.4847	0.0	\square	2.29	-	-- - - -	\cdots

${ }^{1}$ The number of phates per population $:-160$.
2 The value of p lor the values of a used are equal to or less that 0.00 ,
The vanances giving rise th these siandart erors for the heferogencous pophations are ealculated from the mean of the respective population and the means and total vanances (columas of labic 5) of the IF bybrid and $52-805$ (for method see lowers, 14).

By comparing the genctic variances with their standard crrors it is dear that they are siguificanty different from zero for GW959-32R. SP 581040 , US 201, and 50449. In these populations it should be possible to identify gencically-superior individuals and to predict genctic gains.

The percentage of identified-genctically-superior individuals and esti mated means of the subgroup frequency distributions in which these individuats occur are given in Table 6. The variances giving rise to the standard errors listed in the third column of Table 6 are calculated by regression involving the mean of the respective population and the m and b constants in the formula $y^{\prime}=$ mx b. The symbols in the formula have the following connotations:
$y^{\prime}=$ environmental variance
$m=$ the slope of the regression line
$b=$ the point of intercept of the regression line and the ordinate
$x=-$ the mean of the population whose variance is being estimated
In application of the above formala m and b are calculated from the means and variances of the F ; hybrid and $52-305$. For details of the method for estimating the environmental variances of the heterogeneous populations see Powers (14).

The geneticall-superior individuals identified are those composing the percentage values listed in the fourth column of Table f. The number of identified-gencticaly-superior individuals for (WW39-52R and US 201 populations is lour (0.025 X 160), for $S P 33104-0$) is two, and for $50-449$ is one. Since the value of p used in calculating the percontage of identifable-genctically-superior individuals was 0.001 the chances are good that most. if not all, of the 11 individuals representing the percentages listed in column 4 of Table 6 are genetically superior. The chances are vory small that wo of them would occur in these dasses due to envirommental variability.

A conservative estimate of the genetic gains possible by application of the proper breeding methods is obtained by comparing the values listed under mean and obtained, with those listed under mean and superior individuals. The increases expected for the heterogencous populations starting with GW359-52R and procecding down Table 6 are 29.2, 23.9, 28.9, and 30.7 percent, respoctively. Hence, according to the conservative estimates, decided advances can be made in weight per root. The increased levels of yield are even higher for the colums listed under 12.5 percent and 37.5 percent. However. these latter levels of yield would be much more difficult to attain.

Percentage Sucrose and Weight per Root Considered Simultaneously

So far the analysis of the data has considered the identification of gencticallysuperior individuats for either percentage sucrose or weight per root, but not both simultancously. In any breeding progran both characters must be taken into consideration. At least, the breeder attempts to maintain the level of one of these characters while improving the other.

Table 7．－Frequency Distributions of GW359－52R Expressed in Percentages for Percentage Sucrose and Weight per root ${ }^{1}, \mathbf{2}, \mathbf{3}$ ．

		Percentage Sucrose Upper Limit of Class in Percent														
		$$	－${ }^{\text {¢ }}$	\％	$\stackrel{10}{\circ}$	응	$\stackrel{\text { ๙̛̣ }}{=}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\dot{U}} \\ & \text { 10 } \end{aligned}$	$\underset{\substack{N \\ \underset{\sim}{n} \\ \hline}}{ }$	$\begin{aligned} & \stackrel{\circ}{\mathrm{O}} \\ & \underset{\sim}{\circ} \end{aligned}$	$\stackrel{\text { IT }}{\underset{\sim}{n}}$	¢80	10 19	N0， ¢0，		ご
$\begin{gathered} \text { Weight Per Root } \\ \text { Upper Limit of Class in Pounds } \end{gathered}$		\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
	0 to 1.50								0.2	0.2	0.2	0.2			0.2	1.0
	2.25								0.2	0.6	0.2		0.4			1.4
	3.00						0.2		0.4	0.7	0.4	0.2		0.2	0.2	2.3
	3.75					0.2	0.2	0.4	0.8	1.1	1.5	1.3	1.2	0.2		6.9
	4.50				0.2	0.4	0.6	1.0	1.7	2.3	1.5	2.1	1.3		0.2	11.3
	5.25	0.2	0.4	0.4		0.4	0.8	1.2	2.3	3.3	1.9	1.3	0.8	0.5		13.5
	6.00					0.6	0.8	1.9	2.5	2.5	3.1	1.1	1.1	0.4		14.0
	6.75			0.2	0.2	0.4	0.2	2.7	2.5	2.7	1.9	1.1	0.8	0.2		12.9
	7.50			0.2	0.2	0.6	1.3	2.1	1.9	1.2	2.3					10.8
	8.25			0.2	0.3	0.7	0.6	1.3	2.9	1.2	1.2			0.2		8.6
	9.00				0.2	0.8	1.7	1.1	1.2	1.1	0.6					6.7
	9.75		0.2		0.2		1.1	0.8	0.9	0.8	0.4					4.4
	10.50					0.6	0.6	0.7	0.6	0.2	0.2					2.9
	11.25		0.2			0.4		0.2	0.2							1.0
	12.00					0.3	0.2	0.2	0.4			0.2				1.3 ）
	12.75 \＆＞	0.2				0.2	0.4			L 0.2						1.0 ）
	Total	0.4	0.8	1.0	1.3	5.6	8.7	13.6	18.7	18.1	15.4	8.5	5.6	1.7	0.6	100.0

${ }^{1}$ The number of plants $=520$.
${ }^{2}$ The mean percent sucrose $=12.7$ ．
${ }^{8}$ The mean weight per root $=6.19 \mathrm{lbs}$ ．

The study of perentage sucrose and weight per root smolaneousty involves the analysis of the frequency dismbution for both characters. The frequency dixmbotion for percontage sucrose and weight per root is given in Table 7 . From Table ${ }^{3}$ it an be dermmed that for GW859-32R the identifedgenetiolly-superios indixiduals exceded 15.75 percent sucwse and from Table 6 that the identifedgenetically-superion individuals exceded 11.25 pounds per root. The perecnt of this population mecting this reguiremont for percontage sucrose is 3.7, and for weight per root is 2.5 . The expected proportion of the population exceding the upper dass limits for both charaters would be the product of their separate probabilitics on the basis that they are indepentent. In this case it is 0.087 times 0.025 or 0.000925 . If these iwo daracters are independent, approximately one individual in a thousand would be expected to fall into categories that would idenify them as genctically superior for both chamaters. Hence, in a population of 520 indiviluats, none would be expected and none were obtained, as can be seen from Table 7.

An examination of the frequency distribution for GW309-52R given in Table 7 shows that there is a negative relation between perconage sucrose and weight per root. How this negative relation affects the probability of obtating some genetic gain in both chatacters cen be detemined to sone extent by studying that portion of the frequency distribution do limited by a solid black line. The solid black lme delimits thowe individuals that exced the limits of the dass in which the averages of the charaters fall. The percent of the individuat for perentage sucrose lalling in this arca of the frequency distribution is 36.7 and for weight per root is 19.9. The expected perent for both characters on the basis of independence is 18.3. The percent obtained is 10.8 . Among 520 individuals and on the basis of independence. 95 wond be expected to fall within the area of Table 7 delimite! by the solid linc. The number obtained is 50 . The chit square value for resting agrocmont between the two ratios (425.95 and $46450)$ has a p value less than 0.01. The entre frequency distribution confirms that the two haracters are not independent. The retation is negative.

It has been shown that on the basis of independence. only one bees in a thousind could be identifed as genctically-superior for both percenage sucrose and weighe per root. This means that on the basis of independence. to obtain 10 such beets would require a population of 10,000 , Since the rolation is negative between percentage sucrose and weight per root more individuals would be required. An esamination of the data of Table 7 indicates that the negative relation between perentage surrose and weight per root in this population is rasonably linear. It is apparem that very large populations would be requied to idenily filty or more individuals in GW959-52k genctically superior for both characters.

Whether this same negative relation between percentage sucrose and weght per oot exists for other populations and, if so, whether the regression is linear within and between populations should be detemincd. To obtain some intormation the total cosamances and genetic covarancos were calculated for all the segregating popuhtions, Hey are listed in Table 8 .

Table 8.-Within Cultures Total Covariances and Genetic Covariances for Percentage Sucrose and Weight Per Root ${ }^{1}$,

Population	Covariance within cultures	
	Total	Genetic
F1 hybrid	-0.2133 ± 0.0555	-
GW359-52R	-1.8109 ± 0.3615	-1.6520 ± 0.3657
SP 53104-0	-0.3787 ± 0.1883	-0.2197 ± 0.1908
US 201	-0.2059 ± 0.1299	-0.0470 ± 0.1393
$50-449$	-0.3626 ± 0.1356	-0.2036 ± 0.1473
$52-305$	-0.1046 ± 0.0235	-

${ }^{1}$ The number of plants per population $=160$.

The covariances, both total and genetic, were calculated from individual plant data within cultures and populations. Their standard errors were calculated from the covariances within a population (for details of the method see Powers 17, pages 9 and 10). The total covariances for the F_{1} hybrid and $52-305$ populations are environmental covariances. They are significantly different from zero, as the covariance for the F_{1} hybrid is 3.84 times its standard error and that for $52-305$ is 4.45 times its standard error. In fact, with the possible exception of US 201, all of the total covariances are significantly different from zero.

From the data given in Table 8 and as determined by a comparison with their standard errors the only genetic covariance significantly different from zero is the one for GW359-52R. However, the genetic covariances for the other three populations are negative and hence furnish some evidence that even in these populations a slight negative relation may exist between percentage sucrose and weight per root. It is clear that the degree of the relation is similar for SP 53104-0, US 201, and 50-449; but of very little importance as compared with the extent to which this relation exists in the GW359-52R population. An understanding of the biological phenomena responsible for this difference between GW359-52R and the other segregating populations may be of fundamental importance to the sugar beet breeding program.

The frequency distributions for other populations involving percentage sucrose and weight per root may furnish some information pertaining to this problem. Such a frequency distribution for US 201 is given in Table 9. Again the solid line delimits individuals falling into classes beyond those in which the means occur. The second solid black line within this larger group delimits the classes in which it would be possible to identify the individuals genetically-superior for both characters, if any occur. As was also true for GW359-52R, it was not possible in the US 201 population to identify any individuals genetically superior for both characters. On the basis of independence of the two characters, only six such individuals would be expected in a population of 10,000 . Hence, none would be expected in a population of 520 individuals and as can be seen none occurred.

Table 9.-Frequency Distributions of US 201 Expressed in Percentages for Percentage Sucrose and Weight Per Root ${ }^{1}, 2^{2}, 3$.

${ }^{1}$ The number of plants $=520$.
${ }^{2}$ The mean percent sucrose $=11.1$.
${ }^{3}$ The mean weight per root $=3.02 \mathrm{lbs}$.

Another interesting fact concerning the frequency distribution given in Table 9 is that for weight per root 2.7 percent of the population fall into those classes identifying them as genetically superior as regards weight per root and superior to the mean as regards percentage sucrose. For percentage sucrose the situation is quite different as all seven (1.3 percent of 520) of the individuals identified as genetically superior for percentage sucrose fall into classes having values lower than the mean for weight per root. This indicates that within that portion of the population having higher percentage sucrose the same negative relation noted between this character and weight of root for GW359-52R might exist for US 201. Since GW359-52R has both higher percentage sucrose and greater weight per root than US 201, this raises the question whether a threshold exists beyond which the negative relation between percentage sucrose and weight per root becomes pronounced.

If such were the case and most of the individuals for the three populations other than GW359-52R were to fall below this threshold, the small negative and statistically non-significant genetic covariances noted might be expected. Likewise, this same tendency of the identifiable-geneticallysuperior individuals for percentage sucrose to have lower weight per root is evident in the frequency distributions of populations SP 53104-0 and 50-449.

Another biological phenomenon that needs to be considered as a possible factor in bringing about the relation noted between percentage sucrose and weight per root is that the physiology of root growth and formation of sucrose is such that some of the physiological-genetic processes favorable to increased weight per root are not favorable to increased percentage sucrose. The fact that the environmental covariances for the F_{1} hybrid and 52-305 populations are significantly different from zero (Table 8) would tend to support this explanation. If thresholds are involved, such a fact would lend further support to the conclusion that the physiology of the plant at certain levels of weight of root or certain levels of percentage sucrose does not favor both increased weight per root and increased percentage sucrose.

The frequency distribution of GW359-52R given in Table. 7 does not furnish evidence of a threshold operating within this population, as the regression involving percentage sucrose and weight per root seems to be linear. In other words, the relation noted seems to exist to about the same degree throughout the population. It should be noted that the lower levels of percentage sucrose and weight per root are well within those of the other three segregating populations. This finding does not support the theory of a threshold at which increase in one character is associated with a decrease in the other character.

Discussion

Negative Genetic Covariances

Of interest are the possible explanations for the negative genetic covariance between percentage sucrose and weight of root in GW359-52R. For other segregating populations a tendency for this same relation was
noted only anong those plunts having high percentage sacose. The data presented in this study do not provide a fall, nor perhaps adequate, hypothesis to cxplain this relation. Even hough evidence fumished by the data are not conclusive they should be of vilue in helping to datify the problems involved and in designing further experiments.

The possibility of therbolds, at which the negative relaton moted for percentage sucrose and weigh per roo becomes pronounced, has already been mentioned. The fact that percentage sucrose and weight per root are higher for GW359-52R and the negative relation is much more pronounced is evidonce that thresholds may be playing some pant. The trequency distributions of GW859-52R and other populations dow considerable overlapping. Then, that thesholds are not the sole casal phenomenon is indicated by the apparent linearity of regrestion of these two character (se Table 7) thoughout the frequency distribution of the GW859.82R population. For other segregating populations, the tendency for this same negative relation to exist among the plants having the higher perentages of sucrose is turther evidence that thresholds may be playing some part.

Another possible explanation for the negative relation noted in GWgot 52 R is linkage between a preponderance of the genes comditioning very high pertenage sucrose with a preponctance of those conditioning low weight per root. Since the genetic covaniances for the other segregating populations are not statistically signifiom, the data from these poputations do not confim linkage as a causal agency. However, nether do they disprove linkage, as a balanced system may be involved.

A third possible explanation is pleiotropy. Again, if pletotropy were one of the causal agencies, at least some of the gencs condtioning percentage sucrose and some of them conditioning weigh per rool would be pleiotropic in GW859-52R and those conditioning these two chatactes in the other segregating populations would exhibit plesotropy io a very limited extent. Stated another way, at last some of the physiologicalgenetic proceses tending tw proluce high perentage sucrose tend to produce lower weight per root in GW350-52R; but such a relation exists to a very limited extent (if at all) in the other segregating populations. The physiologicalgenetic hypothesis is supported by the finding that those varictics possessing only environmental variabilty have statistically significant negative environmental covariances.

It should be kept in mind that all of these biological phonomena, and others not considered here, may be playing some part in producing the negative relation aoted betweon perentage suowse and weigh per root. They may difter according to the population under consideration.

An understanding of the biological phenomena responsible for the negative relation between percentage sucose and weight per root would be of value in conduting the breding programs. Such knowledge shoudd materially faciltate recombining the desirable genes tor percentage sucrose with the desirable genes for weight per root. Aso, an undertanding of these biological phenomena should provide infomation as to what exten these two characters an be morased smoltanownly and provite other information of value to the planuing and promulgation of the breeding programs.

Cvaluation of Breeding Stocks

In starting breding programs and throughout their duation it is desirable to evaluate the differem material avalable as breeding stocks. The methods and lommelas presented in this artide provide owe means of so doing. Then application should provide the following information: The extent of genctic varibility, the proportion in the population of the identifablegencticallysuperor indidituals, genetir gams posible, and the relathon between the chataters the brocder is striving to recombine or incrase. Such information would make possible the selection of superior stocks with which to stat the breding program, and also the production of superior breeding seoks. These superier breeding stocks can be protuced in the following was: Ifybidization between idenifict-genetically-superior individuals selected from a given population, hybidization between genetiallysupering populations, and, forlly, hybridization betwecn idenifiablegenctic-ally-superior individuals of superion populatons. Also, the relative mexits of these differen brealing stocks so selocted and produced an be equluated by appliation of the methods and formulas outlined in this article.

Value to the Breeding Program

Whe methods and formulas are equally valuable throughout we pursuance of dee brecling programs.

In ascxually propagated matcrial in which mutations may have giren rise to heterogeneity, they an be used to sodet the indivilual identifable as genetically superior. The same applies to selffertilizel orops. Also, where diffeent methods of producing mutations are being tested the methots and fommulas may be used to detomine the most cffertive mutagenic aumaco. and to detomine just bow effective they are in protucing variabilty.

The application of the mothods and fommatas the breeding of crosfertilized crops will be considered in more detail. Heterosis may be of decided importance in breeding some cross-ferilived crops, and some charaters may exhbit hetcrosis and othes may not do so. In the present sudy, heterosis plays very litte part in conditioning percentege surose, whereas in conditioumg weight per root it platys a very decided part. This is brought out very dealy by comparing the frequency disnibutions within Table 1 (perconage suctose) and those within lable 4 (weight per roon). In Table 1 there is no tendency for the frequency distributions of the inbred populations to occur in the lower dasses, whereas there is a dectded tontens for suth w be the case in Table 4 (weight per root). The selection of breeding methods in ciossfertifed crops is influenced materially by whether or not heterosis plays a decided part in conditioning the characier being studied.

For those domaters not exhibiting heterosis, mass selection within the cros-fertilized crope would be expected to bring about an hockase in the desirable trait. In the mass selection program genetically superior indivinals an be identifed by applying the methods and lomolas presented in this article The objertive is to obtain as high a comentration as possible of those gones iending to increase the expression of the desimble danacter and those having havorable interallelic interactions.

For those tharaters exhibiting hetrovis, the methods of breeding mose generally employed are designed to utize general combining abiltey, spe-
cific combining ability, or both. The polycross (Tysdal. Kiesselbach, and Westover, 23) is most commonly used to take advantage of general combining ability and the recurrent selection (Hull, 7) and reciprocal recurrent selection methods (Comstock, Robinson, and Harvey, 2) are designed to take advantage of both general and specific combining ability. The inbred line method of breeding followed by hybridization is designed to take advantage of specific combining ability. For the polycross and recurrent selection methods the different cycles of selection should be tested for proportion of identifiable-genetically-superior individuals and for genetic gains possible. The original brecding stocks and those varicties and strains that the breeding program is designed to replace should be included in these tests for purposes of comparison. Such a test should furnish information as to the progress being made and the advisability of continuing cycles of crossing followed by progeny testing and selection.

For the reciprocal recurrent selection method, the testing of the two sources of the different cycles for proportion of genetically-superior individuals and for genetic gains possible in comparison with the original material provides some information as to the desirability of continuing selection in further cycles. The inclusion of strains and varictics that the breeding program is designed to replace would serve to evaluate the two sources as possible synthetic varieties. The analysis of the frequency distribution of the hybrid between the two sources by methods and formulas given in this article would evaluate the progress being made (if any) as well as provide information concerning the desirability of continuing the bybridization, progeny testing, and selection cycles. If the proportion of individuals identifiable as genetically superior is low or if the genetically-superior individuals are inferior to those of other populations, further cycles of breeding would be of questionable value.

Inbred lines produced from one source of the reciprocal recurrent selection progran should combine well with those produced from the other source. The possibility of getting inbreds whose hybrids would exeel the hybrid between the two sources would be shown by testing the two sources and their hybrid for proportion of genetically-superior individuals and genetic gains possible. These tests are those discussed in the immediately preceding paragraph. The number of inbred lines that it would be necessary to produce and maintain should be comparatively few, if the reciprocal recurrent selection program is successful.

Probably one of the most important functions of the methods and formulas presented in this article is to provide a means of evaluating the breeding program as it proceeds. Likewise, whether the methods and formulas accomplish the purposes for which they were designed is subject to test as the breeding programs progress. The reliability of the methods and formulas will be indicated early in the breeding programs. However, it so desired, progeny performance tests can be made to ascertain the reliability of the methods and formulas for identifying genetically-superior individuals and predicting genetic gains possible.

Experimental Design for Selecting Individuals Genetically-Superior for Both Percentage Sucrose and Weight per Root in GW359-52R

A randomized complete block experimental design for selecting individuals genetically-superior for both percentage sucrose and weight per root in sugar beets is given in Table 10. The number of plants per culture is 24 and as can be seen from Table 10 the number of entries is 12 and the number of replications is 100 . This makes a total of 28,800 plants in the experiment.

Table 10.-Randomized Complete Block Design for Selecting Individuals in GW359-52R Genetically Superior as Regards Percentage Sucrose and Weight Per Root.

Population	Entry Number	Replication and Culture Number						
		1	2	3	-	.	-	100
F_{1} hybrid	1	6	17	28	.	.	-	1200
Inbred	2	7	13	26	-	-	.	1192
GW359-52R	3	2	21	34	.	.	.	1199
GW359-52R	4	1	18	31	.	-	-	1194
GW359-52R	5	11	24	33	.	.	.	1189
GW359-52R	6	9	19	35	.	.	.	1198
GW359-52R	7	4	16	25	.	.	.	1191
GW359-52R	8	8	15	32	.	.	.	1195
GW359-52R	9	12	14	27	.	.	.	1196
GW359-52R	10	3	20	29	.	.	.	1190
GW359-52R	11	10	22	30	.	.	-	1193
GW359-52R	12	5	23	36	-	.	.	1197

From Table 7 it can be seen that 2.3 percent of the GW359-52R population was identified as genetically superior for weight per root. The number of GW359-52R plants in the experiment outlined in table 10 is 24,000 . Of this number 552 plants (2.3 percent of 24,000) would be expected to be genetically superior for weight per root. On the basis of independence also 2.3 percent of these plants should be identifiable as genetically superior for percentage sucrose. Hence, probably approximately 12 plants should be identifiable as genetically superior for both characters. The data show that the two characters are not independent and that the relation between them is negative. Hence, considerably less than 12 plants can be identified as genetically superior for both characters. An examination of Table 7 shows that only 0.2 percent of the individuals identifiable as genetically superior for percentage sucrose fell beyond the average for weight per root. Then, it is doubtful if even one of these 552 individuals, identifiable as genetically superior for weight per root, could be identified as genetically superior for percentage sucrose. It seems that individuals identifiable as genetically superior for both characters cannot be selected in one growing season from a population of 24,000 plants.

Another approach is to save ten percent of the roots having the greatest weight, anayse these for perchage sucrose, and save thone individuals that can be identifed as genetiolly superior for this later haracter. then, agan select from this 10 perent anoher group whoh an be identificd as gemetically superior for weight per root and whol hate the highest percontages of sucrose. If among thexe 2,100 heavier beets any do ocur which are identifable as genctioally superior bot both characters, they should be saved as such and grown in a cossing plot by hemselves. The other two groups should be grown in another crossing plot. In both crossing plots the seed should be saved on an individual plant basis. Ascxunl propaga* tions should be made from all of the beets seleted for parents and grown in the crossing plow mentionce in his paragraph. The progeny from both cossing plots should be tested in an experiment with (\%W859-52R to determine if any improvement has occmated in weight per root and percentage sucrose. If so, the asexually propagetud roots of these progenies should be used for further bxceding purposes.

When crossing the above roots selected from the experiment outhed in Table 10 , provisions should be made to tes for both generil and sperife combining ability. This an be done by cuting each roon into four parts and plating two cuttings from each selection in a polyeross breeding plot. In the second crossing plot composed of the other two quarters of eath bect the reciprocal recurrent solection method of breeding should be employed. Those roots in which identifablegenctionly superior individuals for percentage sucrose hat been solected would be used as one soume and those roots in which identifable-gencticaly-superior individuals for weight of root had been selected would be used as the oher source. The mechonics of the procedure oulined above have been solved and the pertinent information is being prepared tor publiotion by Powers, Finkner, and Doxtator.

Summary

The principles and fommbas devcloped in conmection with the partitioning of variance into its components and in connection with the paritioming method of generic analysis are appled to the idenifoation of genetically. superior individuals of populatoms and to the predicting of genetic zains possible by application of suitable brectimg methods winin these populations.

The identifation of genetionly-superior individuals and prediction al the genetic gans involve analyse of the population frequency distributions.

The method of identifing genetically-simphon individuats by use of the Fommata $z=x \cdots$ sex is given in some chetal and is illustrated, The methods of determining the values of p and x bre given and are illustrated.

The methods employed dently only a portion of the genetially-xuperior individuals in any given pepulation, probably a minor porion.

The percentage of inenthed-genetically-superior individuals listed in the fourth columm of rable 3 provide a basis al predicting senctic gams.
"Ihe idewifed-genetically-superior individuals for any given population are members of a subgroup requency distribution having a mean hager than that of the population in which they occur.

Predicting genetic gains involves estimating the means of these subgroup trequency distributions of which the gencticaly-supertor individuals are members. The formula employed is $y=x-s_{d} x$. Jts application is illustrated.

The idenification of genetically-superior individuals for percentage sucrose and weigh per root simultancously is considered.

The study of percentage sucrose and weight per root simulancously involves the analysis of the lrequency dintribution for both chatactors.

The genctic bovarmece for percentage sucrose and weight per root was fomd to be highly statistically significant and negative for Gw30952R. For the other segregating poputations the genevis covariancs are negative but taken individally none are statistically significant. The biologieal phenomena that might be rexponsible for this genetic relation between the two characters are discused.

The application of the identifation of genctically-superios individuals and prediction of genctic gains to the eraluation of breeding stocks, and to the promulgation and evaluation of the breeding program, is given. In the discussion, application to the following brecting methods is stressed: Nass sdection. polycross, recarrent selection, reciprocal recurmen selection, and production and hybridiation of inbred lines.

An experimental design for selecting individuals genetically-superior for both peremtage succose and weight per root in GW309-52R and its use on the basis of the firdings reported herein are disoused.

Literature Cited

(I) Cowstock, R. 1., and Robmson, M. F. 1948. The components of genetic variance in populations of biparental progenics aud their use in estimating the average degree of dominance, Biometrics 4:254-266.
(2) Comstock, R. F., Robinson, H. F., and Hakvy. P. H. 1949. A breeding procedure designed to make maximum use of both general and specific combining ability. Agron. Jour. 41:360-367.
(3) Drek:kon. G. E., and Hapr. I. N. 194. Effectiveness of seletion on progeny performance as a supplement to carlier calling in liveswock. Jour. Mgr. Res. 60:459-176.
(1) Finter, R. A. 1918. The comelation between relatives on the supposition of Mondeftan inheritance, Trans. Roy. Soc. Elin. 52:300-433.
(5) Frimer, R. A. 1084. Statistical incthods for research workers. Ed. 5, 319 pp, Bllus. Edinbugh and Lomdon.
(6) Frmer, R. A., Limer, K. R, and Tmox, Olof, 1992, Tho genctical intepretation of statistios of the thind degree in the study of quantitative inhertance. Genctics 17:107-124.
(7) Hull., Kreb H. 1945. Recurrent selection tor specifec combining ability in corn. Jour. Amer, Soc Agron, 37:134-145.
(8) Leonard, Wharin H., Mana, H. O., and Powers, Leroy, In press. Partitioning method of genctic andysis applied to plant height inheritance in barley.
(9) Lerner, 1. M. 1900. Popahaion genetics and animal improvement, as illustated by the inhertance of egg production. 312 pp., illus. Cambridge.
(10) Lerner, I. M., and Hazel, L. N. 1947. Population genetics of a poultry flock under artificial selection. Genetics 32:325-339.
(11) Lush, J. L. 1945. Animal breeding plans. Ed. 3, 443 pp., illus. Iowa State College Press, Ames.
(12) Mather, K. 1949. Biometrical genetics. Ed. 1, 158 pp., illus. Dover Publications, Inc., London.
(13) Pearson, K. 1930. Tables for statisticians and biometricians. Pt. 1, Ed. 3, 143 pp., illus. Cambridge.
(14) Powers, LeRoy. 1942. The nature of the series of environmental variances and the estimation of the genetic variances and the geometric means in crosses involving species of Lycopersicon. Genetics 27:561575 , illus.
(15) Powers, LeRoy. 1950. Determining scales and the use of transformations in studies on weight per locule of tomato fruit. Biometrics 6:145-163.
(16) Powers, LeRoy. 1951. Gene analysis by the partitioning method when interactions of genes are involved. Bot. Gaz. 113:1-23.
(17) Powers, LeRoy. 1955. Components of variance method and partitioning method of genetic analysis applied to weight per fruit of tomato hybrid and parental populations. U. S. Dept. Agr. Tech. Bul. 1181, 64 pp .
(18) Powers, LeRoy, Locke, L. F., and Garrett, J. C. 1950. Partitioning method of genetic analysis applied to quantitative characters of tomato crosses. U. S. Dept. Agr. Tech. Bul. 998, 56 pp.
(19) Robinson, H. F., Comstock, R. E., and Harvey, P. H. 1949. Estimates of heritability and the degree of dominance in corn. Agron. Jour. 41:353-359.
(20) Robinson, H. F., Comstock, R. E., and Harvey, P. H. 1951. Genotypic and phenotypic correlations in corn and their implications in selection. Agron. Jour. 43:282-287.
(21) Robinson, H. F., Comstock, R. E., and Harvey, P. H. 1955. Genetic variances in open pollinated varieties of corn. Genetics 40:45-60.
(22) Robinson, H. F., Mann, T. J., and Comstock, R. E. 1954. An analysis of quantitative variability in Nicotiana tabacum. Heredity 8:365-376.
(23) Tysdal, H. M., Kiesselbach, T. A., and Westover, H. L. 1942. Alfalfa breeding. U. Nebr. Agric. Res. Bul. 124, 46 pp.
(24) Wright, Sewell. 1921. Systems of mating. Genetics 6:111-178.
(25) Wright, Sewell. 1922. The effects of inbreeding and crossbreeding on guinea pigs. I. Crosses between highly inbred families. U. S. Dept. Agr. Bul. 1121, 61 pp. illus.
(26) Wright, Sewell. 1923. The theory of path coefficients. Genetics 8: 239-255, illus.
(27) Wright, Sewell. 1935. The analysis of variance and the correlations between relatives with respect to deviations from an optimum. Jour. Genet. 30:243-256.
(28) Wright, Sewell. 1939. Genetic principles governing the rate of proggress of livestock breeding. Proc. Amer. Soc. Animal Prod., pp. 18-26.

[^0]: ${ }^{1}$ Report of a study made by the Field Crops Research Branch, Agricultural Research Service, U. S. Department of Agriculture in cooperation with the Agronomy Section, Colorado Agricultural Experiment Station, and with the Beet Sugar Development Foundation. This paper has been approved for publication by the Station Director as Scientific Series Article No. 484.
 ${ }^{2}$ Geneticist, Field Crops Research Branch, Agricultural Research Service, U. S. Department of Agriculture, Fort Collins, Colorado.
 ${ }^{3}$ Numbers in parentheses refer to literature cited.

[^1]: - The number of plants per population 160.

 2 The F value for populations is 21.13 , the degrees of frectom are 3 . and for populations times replications, which variance was used as an estimate of error, the elegrees of frectom are 95 . The mean square used in calculation of the F value for populations is derived from culture totals (total of 8 plants).
 ${ }^{3}$ These are the within population variances calculated from individual plant data. The standard errors of the total variances are calculated from a formula given by Fisher (5, page 78). The standard errors for the penetic variances are calculated from the well known tormula for the standard error of at difference.

[^2]: ${ }^{1}$ The number of plants per population $=160$.
 ${ }^{2}$ The variance of $52-305$ is 1.1533 (see Tabie 2) and the standard error (sd) is 1.0739 . This variance and this standard error were used as estimates of the environmental variance and environmental standard error, respectively.
 ${ }^{3}$ These means are estimated from the percents listed under the coiumn heading "Superior individuals" and the superior individuals are the percentages of individuals in classes of Table 1 falling beyond the values of z used (3rd column of Table 3).

[^3]: ${ }^{1}$ Number of plants per population $=160$.
 The percentage of any given frequency distribution endosed in brackets is the proportion identified as genctically superior.

[^4]: ${ }^{1}$ The number of plants per pophation $=160$.
 a The stantard eroos of these vinances are calculacd from a fomma given by fisher (5) page 78).

 3 The standard crors of these variances are calculated from the data, variances for cultures within poptlations. For the details of calculating the variances of these variances see Powers (17 , pages 9 and 10).

