BEARSS, LANE S., ANDREW CHOMAS and KURT STEINKE*, Michigan State University, Department of Plant, Soil, and Microbial Sciences, Plant and Soil Sciences Building, 1066 Bogue Street, East Lansing, MI 48824.

Sugarbeet yield and recoverable sucrose response to intensive nutrient management.

Michigan sugarbeet (Beta vulgaris L.) nutrient management recommendations include 157-179 kg N ha with an initial 45 kg N ha applied at planting to promote canopy closure. While individually added inputs associated with yield gaps were previously investigated, synergistic influences when combined with a standard N program (SN) within an integrated management perspective have not been explored. This study investigated sugarbeet root yield and recoverable sucrose response to different fertilizer strategies along a stepwise increase in management intensity. In 2022, SN treatment averaged 90.1 Mg ha, 148.4 kg Mg⁻¹and 13,327.9 kg ha⁻¹in root yield, recoverable sugar per ton and recoverable sugar per hectare, respectively. The addition of in-furrow P negatively impacted root yield and recoverable sugar by -15.5 Mg ha and - 2,325.7 kg ha, respectively. In 2023, pre-plant broadcast lime, in-furrow P, and intensive management (combining all individual inputs) increased root yield by 13.7, 11.9, and 13.2 Mg ha, respectively. The intensive management and pre-plant broadcast lime increased recoverable sugar per Mg by +7.1 and +8.4 kg Mg, respectively, while also improving recoverable sugar per hectare by +2,329.8 and +2,278.0 kg ha, respectively. In-furrow P increased sugar per hectare by 2,186.3 kg ha. The inconsistent root yield and recoverable sucrose response to marketed inputs accentuate the importance of pre-plant soil analysis, in-season weather monitoring, and the use of disease models for developing a climatesmart agricultural system.